Science DMZ Security

Eli Dart, Network Engineer
ESnet Network Engineering Group

Joint Techs, Winter 2013
Honolulu, HI
January 15, 2013
Outline

• Quick background
• Firewall issues
• Non-firewall security options
• Touch on organizational structures
Science DMZ Background

The data mobility performance requirements for data intensive science are beyond what can typically be achieved using traditional methods:

- Default host configurations (TCP, filesystems, NICs)
- Converged network architectures designed for commodity traffic
- Conventional security tools and policies
- Legacy data transfer tools (e.g. SCP)
- Wait-for-trouble-ticket operational models for network performance

The Science DMZ model describes a performance-based approach:

- Dedicated infrastructure for wide-area data transfer
 - Well-configured data transfer hosts with modern tools
 - Capable network devices
 - High-performance data path which does not traverse commodity LAN
- Proactive operational models that enable performance
 - Well-deployed test and measurement tools (perfSONAR)
 - Periodic testing to locate issues instead of waiting for users to complain
- Security posture well-matched to high-performance science applications
Science DMZ – Simple Abstract Cartoon

Border Router

WAN

Enterprise Border Router/Firewall

Site / Campus LAN

Science DMZ Switch/Router

Clean, High-bandwidth WAN path

Site / Campus access to Science DMZ resources

Per-service security policy control points

High performance Data Transfer Node with high-speed storage

perfSONAR
Science DMZ With Virtual Circuits/Openflow

- **WAN**
- **Border Router**
 - 10G Routed
 - 10G Virtual Circuit
- **Enterprise Border Router/Firewall**
- **Science DMZ Switch/Router**
 - 10GE
 - Nx10GE
 - Per-service security policy control points
 - Site/Campus Virtual Circuits
- **High performance Data Transfer Node with high-speed storage**
- **Site / Campus Network**
 - Site / Campus access to Science DMZ resources

Clean, High-bandwidth path to/from WAN
Dedicated path for virtual circuit traffic

perfSONAR

1/14/13
Science DMZ Supporting Multiple Projects

- Border Router
- Enterprise Border Router/Firewall
- Science DMZ Switch/Router
- WAN
- Project A DTN
- Project B DTN
- Project C DTN

Connectivity:
- Clean, High-bandwidth WAN path
- Site/Campus access to Science DMZ resources
- Site/Campus LAN

Per-project security policy control points

1/14/13
Science DMZ Security Model

Goal – disentangle security policy and enforcement for science flows from security for business systems

Rationale

• Science flows are relatively simple from a security perspective
• Narrow application set on Science DMZ
 – Data transfer, data streaming packages
 – No printers, document readers, web browsers, building control systems, staff desktops, etc.
• Security controls that are typically implemented to protect business resources often cause performance problems
Performance Is A Core Requirement

Core information security principles

- Confidentiality, Integrity, Availability (CIA)
- These apply to systems as well as to information, and have far-reaching effects
 - Credentials for privileged access must typically be kept confidential
 - Systems that are faulty or unreliable are not useful scientific tools
 - Data access is sometimes restricted, e.g. embargo before publication
 - Some data (e.g. medical data) has stringent requirements

In data-intensive science, performance is an additional core mission requirement

- CIA principles are important, but if the performance isn’t there the science mission fails
- This isn’t about “how much” security you have, but how the security is implemented
- We need to be able to appropriately secure systems in a way that does not compromise performance or hinder the adoption of advanced services
Placement Outside the Firewall

The Science DMZ resources are placed outside the enterprise firewall for performance reasons

• The meaning of this is specific – *Science DMZ traffic does not traverse the firewall data plane*

• This has nothing to do with whether packet filtering is part of the security enforcement toolkit

Lots of heartburn over this, especially from the perspective of a conventional firewall manager

• Lots of organizational policy directives mandating firewalls
• Firewalls are designed to protect converged enterprise networks
• Why would you put critical assets outside the firewall???

The answer is that firewalls are typically a poor fit for high-performance science applications
Let’s Talk About Firewalls

A firewall’s job is to enhance security by blocking activity that might compromise security

• This means that a firewall’s job is to prevent things from happening
• Traditional firewall policy doctrine dictates a default-deny policy
 – Find out what business you need to do
 – Block everything else

Firewalls are typically designed for commodity or enterprise environments

• This makes sense from the firewall designer’s perspective – lots of IT spending in commodity environments
• Firewall design choices are well-matched to commodity traffic profile
 – High device count, high user count, high concurrent flow count
 – Low per-flow bandwidth
 – Highly capable inspection and analysis of business applications
Thought Experiment

- We’re going to do a thought experiment
- Consider a network between three buildings – A, B, and C
- This is supposedly a 10Gbps network end to end (look at the links on the buildings)
- Building A houses the border router – not much goes on there except the external connectivity
- Lots of work happens in building B – so much so that the processing is done with multiple processors to spread the load in an affordable way, and aggregate the results after
- Building C is where we branch out to other buildings
- Every link between buildings is 10Gbps – this is a 10Gbps network, right???
Notional 10G Network Between Buildings

Building Layout

From Building A to Building B:
- 10GE connection

From Building B to Other Buildings:

From Building A to Building C:
- 10GE connection

From Building C to Other Buildings:
- 10GE connections

WAN connection with perfSONAR

1/14/13
Clearly Not A 10Gbps Network

If you look at the inside of Building B, it is obvious from a network engineering perspective that this is not a 10Gbps network

- Clearly the maximum per-flow data rate is 1Gbps, not 10Gbps
- However, if you convert the buildings into network elements while keeping their internals intact, you get routers and firewalls
- What firewall did the organization buy? What’s inside it?
- Those little 1G “switches” are firewall processors

This parallel firewall architecture has been in use for years

- Slower processors are cheaper
- Typically fine for a commodity traffic load
- Therefore, this design is cost competitive and common
Notional 10G Network Between Devices
Notional Network Logical Diagram

WAN

Border Router

Border Firewall

Internal Router

perfSONAR

10GE

10GE

10GE

10GE

10GE

10GE
What’s Inside Your Firewall?

“But wait – we don’t do this anymore!”

• It is true that vendors are working toward line-rate 10G firewalls, and some may even have them now
• 10GE has been deployed in science environments for over 10 years
• Firewall internals have only recently started to catch up with the 10G world
• 100GE is being deployed now, 40Gbps host interfaces are available now
• Firewalls are behind again

In general, IT shops want to get 5+ years out of a firewall purchase

• This often means that the firewall is years behind the technology curve
• Whatever you deploy now, that’s the hardware feature set you get
• When a new science project tries to deploy data-intensive resources, they get whatever feature set was purchased several years ago
The Firewall State Table

Many firewalls use a state table to improve performance
 • State table lookup is fast
 • No need to process entire ruleset for every packet
 • Also allows session tracking (e.g. TCP sequence numbers)

State table built dynamically
 • Incoming packets are matched against the state table
 • If no state table entry, go to the ruleset
 • If permitted by ruleset, create state table entry
 • Remove state table entry after observing connection teardown

Semantically similar to punt-and-switch model of traffic forwarding used on many older routers
State Table Issues

If the state table is not pruned, it will overflow

- Not all connections close cleanly
 - I shut my laptop and go to a meeting
 - Software crashes happen
- Some attacks try to fill state tables

Solution: put a timer on state table entries

- When a packet matches the state table entry, update the timer
- If the timer expires, delete the state table entry

What if I just pause for a few minutes?

- This turns out to be a problem – state table timers are typically in the 5-15 minute range, while host keepalive timers are 2 hours
- If a connection pauses (e.g. to wait for a large transfer), the firewall will delete the state table entry from under it – connection hangs
- I have seen this in production environments
Firewall Capabilities and Science Traffic

Firewalls have a lot of sophistication in an enterprise setting
- Application layer protocol analysis (HTTP, POP, MSRPC, etc.)
- Built-in VPN servers
- User awareness

Data-intensive science flows don’t match this profile
- Common case – data on filesystem A needs to be on filesystem Z
 - Data transfer tool verifies credentials over an encrypted channel
 - Then open a socket or set of sockets, and send data until done (1TB, 10TB, 100TB, …)
- One workflow can use 10% to 50% or more of a 10G network link

Do we have to use a firewall?
Firewalls As Access Lists

When you ask a firewall administrator to allow data transfers through the firewall, what do they ask for?

- IP address of your host
- IP address of the remote host
- Port range
- That looks like an ACL to me!

No special config for advanced protocol analysis – just address/port

Router ACLs are better than firewalls at address/port filtering

- ACL capabilities are typically built into the router
- Router ACLs typically do not drop traffic permitted by policy
Security Without Firewalls

Data intensive science traffic interacts poorly with firewalls

Does this mean we ignore security? **NO!**

• We **must** protect our systems
• We just need to find a way to do security that does not prevent us from getting the science done

Key point – security policies and mechanisms that protect the Science DMZ should be implemented so that they do not compromise performance
If Not Firewalls, Then What?

- Remember – the goal is to protect systems in a way that allows the science mission to succeed

- I like something I heard at NERSC – paraphrasing: “Security controls should enhance the utility of science infrastructure.”

- There are multiple ways to solve this – some are technical, and some are organizational/sociological

- I’m not going to lie to you – this is harder than just putting up a firewall and closing your eyes
Other Technical Capabilities

Intrusion Detection Systems (IDS)

• One example is Bro – http://bro-ids.org/
• Bro is high-performance and battle-tested
 – Bro protects several high-performance national assets
 – Bro can be scaled with clustering: http://www.bro-ids.org/documentation/cluster.html
• Other IDS solutions are available also

Netflow and IPFIX can provide intelligence, but not filtering

Openflow and SDN

• Using Openflow to control access to a network-based service seems pretty obvious
• There is clearly a hole in the ecosystem with the label “Openflow Firewall” – I really hope someone is working on this (it appears so)
• This could significantly reduce the attack surface for any authenticated network service
• This would only work if the Openflow device had a robust data plane
Other Technical Capabilities (2)

Aggressive access lists

- More useful with project-specific DTNs
- If the purpose of the DTN is to exchange data with a small set of remote collaborators, the ACL is pretty easy to write
- Large-scale data distribution servers are hard to handle this way (but then, the firewall ruleset for such a service would be pretty open too)

Limitation of the application set

- One of the reasons to limit the application set in the Science DMZ is to make it easier to protect
- Keep desktop applications off the DTN (and watch for them anyway using logging, netflow, etc – take violations seriously)
- This requires collaboration between people – networking, security, systems, and scientists
Collaboration Within The Organization

All stakeholders should collaborate on Science DMZ design, policy, and enforcement

The security people have to be on board

• Remember: security people already have political cover – it’s called the firewall
• If a host gets compromised, the security officer can say they did their due diligence because there was a firewall in place
• If the deployment of a Science DMZ is going to jeopardize the job of the security officer, expect pushback

The Science DMZ is a strategic asset, and should be understood by the strategic thinkers in the organization

• Changes in security models
• Changes in operational models
• Enhanced ability to compete for funding
• Increased institutional capability – greater science output
Questions?

Thanks!

Eli Dart - dart@es.net

http://www.es.net/

http://fasterdata.es.net/