Cyberinfrastructure (CI) consists of computational systems, data and information management, advanced instruments, visualization environments, and people, all linked together by software and advanced networks to improve scholarly productivity and enable knowledge breakthroughs and discoveries not otherwise possible.

— Developing a Coherent CI, CASC/EDUCAUSE, February 2009
Cyberinfrastructure

- Confusing
- Complex
- Fragile
- Scary
- Myth
- ???
Dimensions of Complexity in CI

- **Resources**
 - Big, Small, Local, Remote, Instruments, Computers, Data, Oh My!
 - In short, it's everything

- **Users**
 - Scientists, Teachers, Students
 - Everyone (Implementors, Administrators, Secretaries)

- **Organizations**
 - Research Group, Campus, Regional, National, International
 - All of 'em

- No wonder CI is so complex!
- Greater Complexity = Greater Cost + Greater Risk
- We Need Order
A Coherent Cyberinfrastructure

Organizations

Campus

Community

Domain

National

Resources

Users

TG=Teragrid, OSG=Open Science Grid, SG=SURAgird
Success = Less Complexity

- Make it Simple
 - “...but no simpler than it needs to be...” – Einstein
- Organizations Can Scope *Internal* Complexity
 - Set #Organizations = 1
 - (i.e. you make the rules)
 - Deal only with #Users and #Resources
 - Problem Solved!
- Organizations Cannot Scope *External* Complexity (...or can they?)
Scoping Complexity

- **Sources of External Complexity**
 - Established but Divergent Procedures
 - Non-Uniform Talent Distribution
 - Different User Requirements and Support Needs
 - Governance
 - Operational Transparency
 - Trust

- **Solutions to External Complexity**
 - Operational Transparency
 - (Trust and Autonomy)
 - Consistent Interface to Remote (and Local) Resources
 - (Sustainability)

- We need an Organizing Framework
The Open Source Model

- Overcomes barriers in complex environments
 - Distance, skill, and the many people, many organizations, and many resources problem
- Organization around vexing problems
 - Bring experts together to solve real use-cases and identify common needs
- Order through similar project interfaces
 - Overview, Documentation, User and Developer Forums, Bug Tracking, Downloads, About
- Sustainability through open solutions
 - Contributions, derivative works, and autonomy
Open Source Patterns

- Access to accumulated understanding of a process
- Community dialog: mailing lists, forums, wikis
- Use-case discovery through user engagement
- Issue tracking
- Governance
- Freedom to Engage (and Disengage)
Familiar Open Source Communities

- **Linux Kernel**
 - Good example of competing vendors with self interest to support a common infrastructure on which to build value for their customers

- **Apache Software Foundation (ASF)**
 - Good model for community governance plus the above

- **Mozilla Firefox**
 - Good example of an open code base that encourages continued innovation in closed-source competitor products

- **SourceForge**
 - Good example of common project framework that offers a familiar user experience across projects and open reporting of development metrics

- **Globus Toolkit**
 - Good example of adopting OSS model to build a shared infrastructure
Applying the Model to Build CI

- Build Open Communities of Practice
- Document CI deployment and implementation best practices
- Software is just codified knowledge of process
- Open implementations support collaboration
- Open development builds trust and collaboration
- Transparency protects autonomy
CI Practices are the Source

• Campus bridging is software too!
 • We're just not accustomed to “seeing” the code at such high levels: instantiate project wiki, add authorization zone (myCollaborators), post updates

• Program CI in high-level business process abstractions not assembly languages
 • This is the level at which we should be programming – instead we get stuck at the technology point of “assembly languages” (check this, move that, jump here, jump there).
Benefits of Model

- Modularity
 - Supports Extensibility
 - Address Local Needs
- Sustainability
 - Internalized Services Support
 - Self-interest in maintaining operating infrastructure
- Reproducibility
 - Codified Environments
 - Codified deployment support
 - Software provenance
- Natural selection of effective solutions
Structure for Communities of Practice

• Open Interfaces to Campus
 • UABgrid – an open development environment for campus CI development
 • Projects fill campus needs by addressing community use-cases

• Open Cooperation Across Campuses
 • SURAgrid – an open community of practice for CI deployment at campus
 • A success of the NSF Middleware Initiative (circa 2003)
 • Governance by community members (circa 2006)
 • Developed 4 year Strategic Plan for Deploying CI across member sites (August 2008)
 – Strategic Goals: Outreach, Infrastructure, Communications, Sustainability, Corporate Partnership
A Coherent Cyberinfrastructure

TG=TeraGrid, OSG=Open Science Grid, SG=SURAgrid
Challenges

- Need to grow community
 - We have supported this because we believe in the vision and have experienced the benefits (we have been building with shoe-string budgets)
 - We need growth capital to bridge the gap to maturity – where community operations are self-sustained because they are internal to the business operations of the member organizations
- Significant barriers in established operating models
- Requires willingness to work with new organizing models – collaborate not control
What's Needed?

- Expand the community of implementors who will integrate CI into campus and collaboratively build solutions
- Support for this community and the process
- Measure success and growth of community
- Adjust & Repeat
- Core CI “comes out in the wash”...it's the foundation that everyone builds on
Further Reading

- SURAgrid Strategic Plan
- UABgrid Development Project
- Developing A Coherent Cyberinfrastructure (CASC/Educause)
- NSF Software Sustainability Workshop
- Coming Soon: SURAgrid white paper on building CI communities of practice
Acknowledgments

• SURAgrid Collaborators
 • Gary Crane, SURA
 • Phil Smith, Texas Tech University
 • Art Vandenberg, Georgia State University
 • Mary Fran Yafchak, SURA

• University of Alabama at Birmingham Office of the Vice President for Information Technology