Managing Data Center
Power & Cooling

Debbie Montano
dmontano@force10networks.com
Agenda

- Data Center Power Crunch
- Strategies for Reducing Power Across IT
- Power Efficiencies in Networking Today and Moving Forward
- Customer Case Studies
- Q&A
Until recently power efficiency in the Data Center has not been paramount in IT rollouts.

This is now changing and is being driven by:

- Rising power costs
- Blackouts/Brownouts and capacity planning
- Limits to grid/sub-station scaling (No more power available)
- Politic pressures and “green” legislation to drive greater data center efficiencies

If we as an industry don’t lead the process we will be dragged to an unacceptable position.
Energy & Power

- **Energy**
 - Joule (J)
 - Watt-Hour (Whr)
 - Kilowatt-Hour (KWhr)
 - British Thermal Unit (BTU)

- **Power – rate of use of energy**
 - Joule/second
 - Watt == Joule/second
 - Kilowatt = 1000 Watts
 - BTU / hour
 - 1 Watt == 3.413 BTU/hr
 - Ton (usually = 12,000 BTU/hr)

Analogy:
- Gallons of water
- Gallons/hour = rate of use of water
Data Center Crisis: Power/Cooling

Moore’s Law: More Transistors…

More MIPs… More Watts… More BTUs

1 watt of power consumed requires 3.413 BTU/hour of cooling to remove the associated heat

Data Center Power Density Went from 2.1 kw/Rack in 1992 to 14 kw/Rack in 2006

3 Year Costs of Power and Cooling, Roughly Equal to Initial Capital Equipment Cost of Data Center

63% of 369 IT professionals said that running out of space or power in their data centers had already occurred
Growing Power Density

- Communication - Extreme Density
- Compute Servers - 1U, Blade And Custom
- Compute Servers - High Density
- Compute Servers - 2U And Greater
- Storage Servers
- Workstations (Standalone)
- Compute Servers (equipment, Standalone)
- Tape Storage

Year of Product Announcement

Heat Load Product Footprint (watts / equipment sq. ft.)

Growing Power Density

Culprit or Savior?

Brave New
World of >15 KW per sq foot
Force10 Customers
Data Center Power Considerations
1. Prime mover in budgets
2. Network 10% of power budget… **Biggest relief by increasing density and utilization**
3. From planning to build >12 months
Agenda

- Data Center Power Crunch
- Strategies for Reducing Power Across IT
- Power Efficiencies in Networking Today and Moving Forward
- Customer Case Studies
- Q&A
Total system efficiency comprises three main elements - the Grid, the Data Centre and the IT Components. Each element has its own efficiency factor - multiplied together for 100 watts of power generated, the CPU receives only 12 watts.

So the “other way” and saving 6 watts means reducing 60 watts of power plant generation.
A Series of Conversion Efficiencies

- **Fuel Source**
- **Carbon Conversion factor**
- **Renewables**

Server Utilisation
- Operating System Efficiency
- Software Optimization

Grid
- Data Centre
- IT Components

Copyright 2008 Force10 Networks, Inc
A Series of Conversion Efficiencies

Carbon Efficiency

Fuel Source
Carbon Conversion factor
Renewables

Server Utilisation
Operating System Efficiency
Software Optimization

Grid Data Centre IT Components
A Series of Conversion Efficiencies

Carbon Efficiency
- Fuel Source
- Carbon Conversion factor
- Renewables

Grid Efficiency
- Server Utilisation
- Operating System Efficiency
- Software Optimization

IT Components
- Grid
- Data Centre
- IT Components
A Series of Conversion Efficiencies

Carbon Efficiency
- Fuel Source
- Carbon Conversion factor
- Renewables

Grid Efficiency

Data Centre Efficiency

Server Utilisation

Operating System Efficiency

Software Optimization

Grid

Data Centre

IT Components
A Series of Conversion Efficiencies

- **Carbon Efficiency**
- **Grid Efficiency**
- **Data Centre Efficiency**
- **IT Efficiency**

Fuel Source
- Carbon Conversion factor
- Renewables

Server Utilisation
- Operating System Efficiency
- Software Optimization

Grid
- Data Centre
- IT Components

Copyright 2008 Force10 Networks, Inc
A Series of Conversion Efficiencies

- Carbon Efficiency
- Grid Efficiency
- Data Centre Efficiency
- IT Efficiency
- OS/Software Efficiency

- Fuel Source
- Carbon Conversion factor
- Renewables

- Server Utilisation
- Operating System Efficiency
- Software Optimization

Grid | Data Centre | IT Components

- Power Station
- Transmission
- Transformer
- Cabling
- Cooling
- Ancillary
- UPS
- S/S
- Power supply
- DC/DC Conversions
- CPU
Data Center Best Practices

- Majority of efficiency improvement from rectifying inefficient cooling (60% of your wattage work set)
- Hot/Cold Row Cooling
- Minimize leakage/blocking/bypasses
Tips

- Stay diligent about hot and cool aisle flow
- Ruthless air flow… watch out for cabling, other obstructions.
- Blank your racks as well as your slots
- How cool? --- the mid-point of recommended range is 74 degrees and 50% humidity
- Get your tiles rights… perforated for cold, solid for hot
- Read your electric bill.

Minimize power consumption and maximize power efficiency at every level within the infrastructure.

- CPU Chips
- Power Supplies
- Servers
- Storage Devices
- Cabling
- Networking
Power efficient architectures
- A dual core processor can deliver >60% higher performance than a single core processor dissipating the same power
- e.g. integrated memory controllers
- Application-specific multi-core chip architectures include cluster computing, transaction processing, and multi-tasking.

Processor Power Management with Dynamic Clock Frequency and Voltage Scaling (CFVS)

Future: Transistors with Lower Leakage Current
- replace the silicon dioxide gate dielectric with hafnium-based high-k material
Clock Frequency and Voltage Scaling

- Dynamically adjusting CPU performance (via clock rate and voltage) to match the workload
- Uses the operating system’s power management utility via industry-standard Advanced Configuration and Power Interface (ACPI) calls
- 75% power savings at idle and 40-70% power savings for utilization in the 20-80% range
Blade Servers:
- Chassis “sharing” can reduce power consumption by 20-50%
 - Larger chassis’ are more efficient (>80%)
 - Blade servers inspired by modular switch/routers
 - Even esoteric edge improvements scale up

Server Virtualization:
- Applications consolidated on a smaller number of servers, eliminating power consumption by many low utilization servers dedicated to single applications
- Potentially #1 improvement (5-20x “compression”)

![Diagram of server virtualization](image)
Power consumption in storage devices is primarily by spindle motors and is largely independent of the capacity of the disk
- The bigger the disk, the better

Maximize TBytes/watt to the highest capacity disks
- Must keep I/O characteristics compatible with the applications being served

Unified Ethernet storage virtualization technologies and large-scale tiered storage maximize power efficiency by minimizing storage over-provisioning
Agenda

- Data Center Power Crunch
- Strategies for Reducing Power Across IT
- Power Efficiencies in Networking Today and Moving Forward
- Customer Case Studies
- Q&A
Little difference in Gbps/watt for fixed configuration and stackable switches

Considerable differences for modular switch/routers due to backplane technology and box-level densities

- Heavy copper traces reduce backplane resistance and wasted power consumption
- Force10 E-Series uses patented 4 layer, 4 ounce copper backplane that has power efficiency of 4.5 Gbps/watt (= backplane capacity/power consumption)
- 10-20x less resistance
- Ethernet can provide LAN connectivity, storage networking, and cluster interconnect across the data center

- With a unified fabric, power is conserved
 - No additional sets of switches for specialized fabrics
 - Higher utilization on existing switches
 - Only one network adapter per server
 - Efficient cable management
Applications draw on a shared pool of resources

No resources dedicated to a single application – higher utilization

Workloads of various applications peak at different times in the business cycle

Shared resource model: Do the same job with far fewer resources
System configured with **full switch fabric, route processor, and power redundancy** and 672 **line-rate** GbE 1000 Base-T ports

<table>
<thead>
<tr>
<th>Slot</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,055</td>
</tr>
<tr>
<td>1</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>290</td>
</tr>
<tr>
<td>3</td>
<td>290</td>
</tr>
<tr>
<td>4</td>
<td>290</td>
</tr>
<tr>
<td>5</td>
<td>290</td>
</tr>
<tr>
<td>6</td>
<td>290</td>
</tr>
<tr>
<td>7</td>
<td>290</td>
</tr>
<tr>
<td>8</td>
<td>290</td>
</tr>
<tr>
<td>9</td>
<td>290</td>
</tr>
<tr>
<td>10</td>
<td>290</td>
</tr>
<tr>
<td>11</td>
<td>290</td>
</tr>
<tr>
<td>12</td>
<td>290</td>
</tr>
<tr>
<td>13</td>
<td>290</td>
</tr>
</tbody>
</table>

Total Power 5,365 Watts

Power Efficiency in Watts/Gbps 8 (=5365/672)

DC Current @ 40V 134
Maximizing Network Power Efficiency

In the Core and Data Center

- E-Series resilient, scalable, high density switches
- collapsed Distribution/Access Tier--2-Tier switching
- elimination of numerous low density switches

Power Saved on 270 Node DC

<table>
<thead>
<tr>
<th>2 Force10 E1200s</th>
<th>5 Catalysts 6000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,600 watts</td>
<td>20,000 watts</td>
</tr>
</tbody>
</table>

Source: Enterprise Rental Car
Maximizing Network Power Efficiency

In the Wiring Closet
- C-Series resilient, scalable, high density wiring closet switches
- Collapsed Distribution/Access Tier--2-Tier switching
- Eliminate numerous low density switches

<table>
<thead>
<tr>
<th>Comparison – Large Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Series</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>9,400 watts</td>
</tr>
</tbody>
</table>

Copyright 2008 Force10 Networks, Inc
Introducing the Force10 S2410

Highest Density, Lowest Latency and Price

- Industry-leading density and flexibility
 - 24 line-rate 10 GbE ports in 1 RU
 - Full function switch
 - XFP or CX4 interfaces

- Drives down 10 GbE port prices to spur adoption
 - List pricing starting at $24,000 (CX4)
 - Reduces 10 GbE switching latency to InfiniBand levels
 - 300 nanoseconds

Lowest power consumption of any switch on the planet
480 Gbps switching on 125 watts!!!
Becoming a key metric for product comparison
- Servers: Application workload/watt (e.g., Mflops/watt)
- Storage: GBytes/watt
- Networking: Gbps/watt

IEEE Energy Efficient Ethernet working group

EPA considering Energy Star Rating for Data Center equipment, including switch/routers

Force10 member of TheGreenGrid.org and can provide updated power calculators to model power and cooling in TCO calculations
Timing of Application Needs

<table>
<thead>
<tr>
<th>Date</th>
<th>Rate Mb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>1,000</td>
</tr>
<tr>
<td>2000</td>
<td>10,000</td>
</tr>
<tr>
<td>2005</td>
<td>100,000</td>
</tr>
<tr>
<td>2010</td>
<td>1,000,000</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>

Source: IEEE 802.3 HSSG
Agenda

- Data Center Power Crunch
- Strategies for Reducing Power Across IT
- Power Efficiencies in Networking Today and Moving Forward
- Customer Case Studies
- Q&A
Remove Wasteful Interconnects

CAP-EX
- 75% lower up front cost, > $1 million savings
- One device, versus five
- 28 less line cards

OP-EX
- 81% less power
- 81% less cooling needed (air conditioning)
- 80% less rack space

OP-EX
- Power 3,760 W
- BTU / hr 12,812

OP-EX
- Power 19,920 W
- BTU / hr 67,960

4 x 10 GbE uplinks

270 line-rate nodes

48 x 10 GbE Interconnects

90 270 line-rate nodes
Client Requirements

- Build #1 super computing center in Europe to focus on computational, earth and life sciences
- Location - Torre Girona Chapel
- 153 sqm with 2,560 GbE nodes - 94.21 tera flops
- Non-blocking supercomputing
- Create a scalable, flexible environment

Solution

- Raised floor to accommodate high flow reqs
- Cooling water storage tanks
- IBM blue gene and 1350 blade servers drove massive Gigabit densities

Benefits

- High density Ethernet (8 watts/gbe)
- Supports 21KW/rack (400 W/sq ft) of cooling
- Flexibility for the future –supercomputing performance upgrade underway
- World’s most beautiful supercomputing center
Yahoo! Case Study

Client Requirements

- Bandwidth doubling every year
- Expects 10 GbE server scale in 1-3 yrs.
- 20 Gigabit bandwidth in metro transport
- Explicitly dual-vendor – interoperability a must

Solution

- Running 80 KM WDM optics
- “POD” design with 300+ GbE nodes
- Extreme Gigabit densities

Benefits

- Power footprint of 2.5 KW per 300 nodes
- 1/3 the cooling budget of previous switch and over $2.5M in power & cooling savings in 3 years
- Substantial (4-8x) saving over SONET
Based on standard U.S. Government tests

ENERGYGUIDE

Router Switch

Compare the Energy Efficiency of This Switch-Router with Others Before You Buy
Thank You

Debbie Montano
dmontano@force10networks.com