Abilene Update

Rick Summerhill
Associate Director, Backbone Network Infrastructure
Steve Corbató
Director, Backbone Network Infrastructure

Internet2 Spring Member Meeting
Arlington, VA
21 April 2004
Outline

- Partners
- Performance
- Participants
- Peering
- Focus Areas
- Futures
Abilene Partnerships

- Indiana University
- Juniper Networks
- Nortel Networks
- Qwest Communications
- Internet2
- ITECs
Abilene Backbone
Performance

- 6.25 Gbps flows across Abilene
 - Recent LSR from Caltech to CERN
- Consistent 9.5 gbps traffic volumes during SC2003 from Phoenix
- MPLS L2VPN experiments with prioritized service have shown excellent performance on tunnels and with little effect on normal traffic
- We’re currently looking to the future and at potential next generation architectures
Abilene Timeline

- Apr 1998 Network announced
- Jan 1999 Network went into production
- Second generation network upgrade
 - Oct 2001 Qwest MoU (DWDM+SONET) extension (5 years)
 - Oct 2001 NLR initiative commenced
 - Apr 2002 Juniper router selection
 - Dec 2003 2nd generation upgrade complete
- Oct 2006 Transport MoU with Qwest ends
 - Past experience suggests that the time frame for both next generation architecture finalization & decision on transport partner(s) would occur ~12 months from now – Spring 2005.
IPv4/v6-over-DWDM (OC-192c) backbone

44 direct connections (OC-3c → 10 GigE)
 • 2 10-GigE connections (10 Gbps)
 • 6 OC-48c connections (2.5 Gbps)
 • 2 Gigabit Ethernet connections (1 Gbps)
 • 23 connections at OC-12c (622 Mbps) or higher

228 participants – research universities & laboratories
 • All 50 states, District of Columbia & Puerto Rico
 • Johns Hopkins as of last Friday!

Expanded access
 • 104 sponsored participants
 • 33 state education networks
Abilene Participation - Upgrades

- Connection fees lowered in 2004 to facilitate upgrades

- Upgrades – please contact us to start the process
 - Facilitate the process with Qwest from the national side
 - Insure that there is coordination between the national and local teams working the upgrade
 - We attempt to solve problems that occur, for example dark fiber builds into a Qwest PoP

- We will put up a web page on the Abilene site that describes the process and indicates current status of various upgrades
Abilene Participation - Upgrades

- Current status
 - Connectors well along in the process
 - University of Oregon
 - University of Arizona
 - Connectors looking at upgrades
 - Connectors in Florida (Florida Lambda Rail)
 - Louisiana
 - New Mexico GigaPoP
 - University of Minnesota (Northern Lights)
Abilene International Peering

* via GEANT: ACoNet, BELNet, CARNet, CESNET, CYNET, Forskningsnettet, EENet, Funet, Renater, G-WIN, GRNET, HUNGARNET, Rhenet, HEAnet, IUCN, GARR, LANET, Litnet, RESTENA, Univ. Malta, SURFnet, UNINETT, POL34, RCTS2, RoEduNet, RBnet, SANET, ARNES, RedIRIS, SUNET, SWITCH, JANET, ULAKBIM, CERN

† via APAN/TransPAC: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREONET2, PREGINET, SingAREN, TANET2, ThaiSARN, WIDE (v6)
Abilene Peering

Peering Methods
- Preferred is through an exchange point: For example, PacWave, Starlight, MAN LAN, and AMPATH
- Direct peering to backbone router in some cases
- Peering through GigaPoPs, through tunnels or BGP multihop (for example, AMPATH, CUDI peerings)

Connectivity to Exchange Points
- MANLAN (Internet2/NYSERnet partnership) – 10 GigE
- PacWave-Seattle – 10 GigE
- PacWave-LA – 10 GigE in very near future
- Starlight – 2 x 10 GigE
- NGIX East – 10 GigE
- NGIX West – 1 GigE in very near future
Abilene Focus Areas – 2004

- Support for high-throughput flows (multi-Gbps)
 - Collaboration with End-to-End Performance Initiative
 - Ensuring that large flows are the standard across the Internet2 infrastructure

- Security
 - Collaboration with REN-ISAC and the pending Cyber Trust effort

- Network resiliency
 - Fast network restoration in the face of outages

- IPv6

- Abilene Observatory – Supporting Network Research and an Open Measurement Platform

- Provisioning dedicated capabilities (with the HOPI project)
Abilene and IPv6

IPv6 Deployment

- Significant number of peers and connectors now have native connections:
 - 28 connectors (roughly 2/3 of the connectors)
 - 21 peers
- Abilene is a native backbone participating in the Moonv6 project
 - Provides rich IPv6 connectivity for the research and education community
- Significant experimentation and support effort
 - Looking at multicast deployment
 - DNS and tunnel server support
 - Tutorials at the GigaPoP or university level
- See http://abilene.internet2.edu/observatory/connection-technologies.html
A program to provide enhanced support of computer science research over Abilene

- Create network data archive
 - Consists of distributed database located on servers in Ohio, Indiana, and Michigan
 - Forms a large correlated database
 - Tools to access the database
 - Support from and for graduate programs

- Collocation Component - provision for direct network measurement and experimentation
 - Resources reserved for additional servers
 - Power (DC), rack space (2RU), router uplink ports (GigE)
 - PlanetLab and AMP are current projects
- **Research groups involved in the project**
 - Boston University
 - Carnegie Mellon University
 - Case Western Reserve University
 - Kent State University
 - University of Massachusetts Amherst
 - University of Minnesota
 - University of Wisconsin
 - University of Wisconsin / Oregon Health & Science University

- **Collocation projects**
 - PlanetLab, AMP

- **See**
 - http://abilene.internet2.edu/observatory/research-projects.html
Abilene Observatory

Measurement capabilities

- Four dedicated servers at each node
 - Local data collection to capture data at times of network instability
 - CDMA device provides GPS-synchronized time signals
 - Provision for additional servers in the future
- Datasets
 - Usage Data – the amount of traffic on network links
 - Netflow Data – data that examines individual flows across the network
 - Routing Data – where packets are directed within the network
 - Latency Data – how long it takes packets to reach their destinations
 - Throughput Data – the capability of the network to support flows of information.
 - Router Data – how the routers view the network
 - Syslog Data – what the routers are reporting about the network
Abilene Observatory

- Recent additions
 - IGP (IS-IS) Data collections
 - The worst ten lists

- Concerted effort to coordinate activities with the research communities
Dedicated Capabilities on Abilene

Recent MPLS/VPN Experiments
- MPLS tunnel to support the PSC connection to the TeraGrid
- Permanent MPLS L2VPN between Abilene NOC and North Carolina ITEC
- Lightpath experiment from LA to CERN – MPLS L2VPN across Abilene from LA to Starlight
- MPLS L2VPN to support the Texas connection to the TeraGrid

Future Experiments
- Expand ITEC/NOC tunnel by creating MPLS L2VPN capability between the Abilene NOC and all the ITECs
- Will support MPLS L2VPNs for research groups
- Will pursue other opportunities over next year, especially related to the HOPI project
HOPI – The Hybrid Optical and Packet Infrastructure Project

- Project of Internet2
- Creating a HOPI testbed
- Testbed will use resources from Abilene, the Internet2 wave on NLR, the MAN LAN Experimental facility, and the Regional Optical Networks

Goal is to look at future architectures involving a hybrid of shared packet switched networks like Abilene and an infrastructure consisting of dynamically provisioned optical waves

- In particular, to examine next generation Internet2 architectures

MPLS L2VPN tunnels across Abilene will provide access to the HOPI testbed
Abilene and the HOPI Project

- HOPI Design Team (consisting of many Internet2/Abilene participants) has created a HOPI Testbed Whitepaper
 - Now available on the HOPI web site at
 - http://hopi.internet2.edu

- Will coordinate activities with other groups and testbeds
 - Surfnet
 - CA*net
 - Research projects such as DRAGON and CHEETAH
More information

- http://abilene.internet2.edu
- http://abilene.internet2.edu/observatory
 - Additional pointers off this page
- http://hopi.internet2.edu
- abilene@internet2.edu
- hopi@internet2.edu
Internet2, NLR, and the RONs

• Internet2 is one of the strongest collaborators/contributors within NLR and for the Regional Optical Networks (RONs)
• We believe it is essential that NLR is successful, and we are committing resources accordingly
 – Internet2 is contributing $10M directly to NLR in unrestricted cash and dark fiber – largest R&E contributor
 – Significant personnel engagement:
 • Doug Van Houweling (board member)
 • Steve Corbató (board officer)
 • Steve Cotter (implementation)
 • Michelle Pollak (communications)
 – Internet2 is planning to use its NLR λ capability in a visible fashion through the HOPI testbed
• We believe that RON development is absolutely critical for the future architecture
 – FiberCo is facilitating both NLR and RON development
 – Quilt Fiber project is focusing on RON optical equipment
IPv4/v6-over-DWDM (OC-192c) backbone

44 direct connections (OC-3c → 10 GigE)
 • 2 10-GigE connections (10 Gbps)
 • 6 OC-48c connections (2.5 Gbps)
 • 2 Gigabit Ethernet connections (1 Gbps)
 • 23 connections at OC-12c (622 Mbps) or higher

32 connections utilize provided SONET backhaul
 • Connection fees lowered in 2004 to facilitate upgrades

228 participants – research universities & laboratories
 • All 50 states, District of Columbia & Puerto Rico
 • Johns Hopkins as of last Friday!

Expanded access
 • 104 sponsored participants
 • 33 state education networks
Abilene timeline

- **Apr 1998** Network announced
 - Qwest/Nortel (SONET), Cisco & IU partnerships
 - Jan 1999 Network went into production

- **Second generation network upgrade**
 - Oct 2001 Qwest MoU (DWDM+SONET) extension (5 years)
 - Apr 2002 Juniper router selection
 - Dec 2003 2nd generation upgrade complete

- **Oct 2006** Transport MoU with Qwest ends
 - Past experience suggests that the time frame for both next generation architecture finalization & decision on transport partner(s) would occur ~12 months from now – *Spring 2005*.

- **Time is now for architecture evaluation and planning**
 - HOPI design team and testbed is a first step in this direction
The fundamental nature of *regional networking* is changing

- The *GigaPoP* model based on *provisioned, high-capacity services* is being replaced steadily – on the *metro and regional scales*

- A model of *facility-based networking often built with owned assets* – Regional Optical Networks (RONs) – has emerged

- Notably, this change *increases* the importance of regional networks in the traditional *three-level hierarchy* of U.S. R&E advanced networking
 - The Quilt Project is a critical component in facilitating these ongoing metamorphoses
Gauging community-wide progress with dark fiber

- **Aggregate dark fiber held for and assigned by U.S. R&E optical initiatives (segment-miles):**
 - CENIC (for NLR and CalREN via L3, WilTel) 6,200
 - FiberCo (for NLR and RONs via Level 3) 4,900
 - SURA (via AT&T) 6,000
 - (plus 2,000 route-miles for research usage)
 - Oak Ridge National Lab. (via Qwest) 900
 - Ohio 1,600
 - Other state projects (IN, IL, MI, OR, etc.) 1,500+

- **Total (conservative estimate)** 21,000+

- **Pending procurements (TX, NY, NE)** 1,700+
HOPI’s raw materials

- **Abilene Network**
 - 10-Gbps IPv4/IPv6 + MPLS tunnels

- **Internet2’s 10-Gbps λ over NLR**

- **MAN LAN exchange point – New York City**
 - Ethernet Switch – layer 2 switching
 - TDM Switch – layer 1 switching
 - Venue for international collaboration
 - SURFnet, CANARIE, ESnet, SINET, Abilene

- **IEEAF/Tyco 10-Gbps λ - NYC-Amsterdam**

- **Collaborations with Regional Optical Networks (RONs) and other related efforts (e.g., GLIF, DRAGON)**
SURFnet6 Network Architecture
Conclusions

- Abilene is now halfway into its 2nd generation
 - Established platform for network and application innovation for the U.S. R&E community
 - Strong community and established business plan
 - We have a very strong partnership – Qwest, Juniper, and IU

- The logical starting point for evaluation process for next generation architecture is now…
 - We are at an inflection point in network architecture
 - HOPI design team and testbed underway
 - Read the design team report: \texttt{http://hopi.internet2.edu}
 - Coordinating with the RON buildouts and NLR time table will be a critical task

- Good news: lots to evaluate, ponder & discuss
 - We need your input: \texttt{abilene@internet2.edu}
 - Phone (Steve): 734-352-7006