
Using archived argus flow records to secure and troubleshoot
your network

Peter Van Epp
Operations and Technical Support

Simon Fraser University
vanepp@sfu.ca

The first part of this paper is going to try to demonstrate by way of
examples why a record of all traffic in and out of your network archived to
disk is valuable for security and network troubleshooting. While there are
a variety of ways of collecting this data (argus, netflow, and ipaudit being
some of them) we will only look at argus because its what I happen to be
running. Once we have seen the value of such a record we will look at some of
the issues around performance on high speed (~1 gigabit) and very high speed
(~10 gigs / OC192) networks since that is an area of interest to the folks here.

In an article in Usenix's Login: magazine some years ago [1] I argued
that an archived record of all traffic across your net is excellent insurance
for your network even if you only archived the data and didn't look at it
(other than to verify it is being correctly collected) until you have a problem.
Note that this should be your last line of defense and as or more importantly
an audit trail rather than the only line of defense because it is reactive
rather than proactive (i.e it records that something bad happened but doesn't
do anything about it other than to record it). To protect data that needs to
be secure you likely need a bunch more possibly proactive defenses to protect
the data. However in the event that they fail (or are compromised) the audit
trail tells you that it has happened and possibly provides some sense of the
scope of the breach (such as how much data the attacker was able to access).
Both of which are very valuable. For data that isn't confidential which is
probably the bulk of your network traffic, this record and after the fact
enforcement can and does contain your traffic charges to the commodity Internet
and does perfectly well at protecting your network and the rest of the Internet
from abuse both towards your network from the Internet and as importantly (at
least on our network) from your network towards the Internet. It has been our
opinion for years that our firewalls need to face inwards to protect the rest
of the Internet from a small fraction of our user community (in the early days
when we were the only Internet game in town, the same 200 or so accounts out
of 22,000 were the source of all discovered problems, that works out to about
.1% that we need to guard the rest of the Internet against).

I hope here to demonstrate that it is even better to collect, post
process and act on the data on a daily basis to keep your network both secure
and running correctly. Most of this (with the exception of the act part) of
this process can be and has been automated. My installation collects, archives
to disk (in two physically separated machines, but you don't need to be that
paranoid if you don't want to) and post processes the data to generate a
report (an example of which is included below) on the data for the previous
24 hours. The main report sorts the top 30 hosts by traffic volume in the last
24 hours and displays them (highest traffic first) along with the top 10
destination hosts (again sorted by high traffic) and then traffic by
destination port to that host. This report can be scanned in a few minutes in
the morning and will tell you about the health of your network. Normally (at

least on our networks) there will be the usual suspects, campus wide servers
of various kinds that as long as they are within their usual traffic usage can
be ignored (and could be but, aren't at this point, automatically ignored). If
the volume is abnormally high the reason will likely be easily visible in the
list of destination hosts. However the most interesting entries on the list
are random hosts on your network that have suddenly made the top 30 list.
Often enough this is an indication that the machine has been compromised and
is being used as a file store / file transfer host by an attacker. An alternate
reason is that there is a new peer to peer file transfer protocol out that
your usual control mechanism isn't aware of yet, and finally (but relatively
rarely on my network) it may be someone doing something high volume that
actually qualifies under the Acceptable Use Policy. The easy differentiation
between the traffic types is number of destination ports and destination port
numbers (the P2P stuff that is port agile gets more difficult though). If the
transfers are to many different machines, many of them in the cable modem /
ADSL networks around the world it is suspicious as possibly P2P or possibly a
compromised machine and is worth checking in to a little more carefully. Some
of these are easy to dismiss as acceptable, a large transfer from a faculty
member's office to a single offsite host I would usually ignore for instance.
Some known problem areas such as public labs with student access doing P2P to
cable modems all over, are easy to classify as probably worth inquiring about
to make sure they meet the AUP. I would guess that about %90 of the time on
our network they don't meet the AUP, I have hit very few legit P2P transfers
although there are some. It is usually profitable to have a look at the raw
argus logs for the host in question at a time a bit before the suspicious
transfer starts. Sometimes you will see evidence of a compromise from offsite.
Other times you will see the traffic just start on its own (which is likely
an indication that someone on the machine started it intentionally).

I'll note that when the p2p folks start encrypting the data stream and
or use standard ports such as 80 and 443 to try and hide the transfer I (and of
course you, if you are smart) are still going to see blocks of high traffic
going from a single local host to a wide variety of off site hosts which start
suddenly one day as suspicious. It may well bypass our automatic traffic
limiting device, but I much doubt that it will survive the IP being blocked
from off campus access (or the network port or MAC address being blocked in the
network for the extreme sport fanatic that has a desire to meet important people
to try their marketing skills to get network access back) until an explanation
of why the traffic was valid is forthcoming.

In addition to the traffic count stats there is a rudimentary port
scan detector included, although it is very much a work in progress at this
point. The most useful part of it so far is a check for local machines sending
email to more than 50 unique hosts within any given hour. So far in every case
where this has happened it has been as the result of a virus or trojan on a
machine, which are apparently being sold. We see a connection usually from
somewhere in Russia to establish the machine is still infected followed about
20 minutes later by a connection (usually from a compromised machine in the
US) which spams for 20 to 40 minutes and then stops. Since this is often in
the middle of the night, and rarely causes any external complaint argus finding
and flagging them is the only thing that is getting the machines cleaned. There
are a variety of control channels in use, sometimes an IRC server, sometimes a
connection on port 113 (identd) sometimes a high random port number.

Unfortunately a compromised host our way that is doing high volume
scanning out currently most often gets found because the morning traffic report
has crashed and burned by running out of memory trying to account for the
traffic to all the scanned hosts. While this works well enough, a scan of the
raw argus logs generally identifies our infected host, and arranging to ignore
it gets the reports running again, it is annoying. The solution in progress
will be to first run the port scan detector and flag any of our hosts that
are scanning and arrange to ignore small traffic volumes to the hosts they are
scanning (which is what runs the script out of memory). The exciting part of
course is going to be not ignoring a scanned host that is high volume for some
other reason than it is being scanned or is scanning.

In addition the post processing is split in to phases to allow a high
volume site to spread the processing load out. When the argus file cycles
(every hour in my case as often as every couple of minutes at a high volume
site) some post processing (looking for scans, pre calculating some traffic
counts) occurs. Since on a single cheap machine this post processing can take
longer than a collection interval (if the cycle interval is 2 minutes for a
100 meg file for instance), a pool of machines can spread both the archiving
I/O load and the post processing load across a pool of inexpensive PCs to
keep hardware cost somewhat reasonable (at high link speeds things become
expensive no matter however, this only reduces that cost somewhat). I so far
haven't needed this but other argus sites already do, as may we at some point
in the future, so a little forethought and planning now may pay off later.
We will return to this subject in the second half of this paper where we look
at performance issues on high speed links.

Now having seen in general what we are doing lets get more specific
about how our setup is configured and why, and what other options there are.
Our argus setup consists of 3 machines which happen to be spread across 2
physical sites. For a low speed link (such as my ADSL line at home) a single
small machine (a 16 meg clock speed and ram 386 running FreeBSD) storing the
archive on the local disk does just fine. At some point controlled by link
speed, I/O and memory bandwidth on the motherboard and CPU speed the disk I/O
of writing the archive files to the disk start to use enough internal bus
bandwidth that the Ethernet card(s) start to drop packets. When you hit that
point (and my 35 meg link hits that point) you need to move to a dedicated
machine for the argus sensor which only runs the argus daemon (preferably
from a memory file system so there is no disk I/O even for update to steal
bus bandwidth) and writes the output data stream to a socket. The next
machine in line (via a cross over ethernet cable in my case, so network
problems won't interrupt the link capture) uses the argus ra client to read
the argus data stream from the sensor and archive it to disk. There is at least
a 10 to 1 (and it may be much higher) reduction in the amount of data appearing
on the monitored connection to what gets written out as the argus data stream.
We will see later, this and some other features are very useful at very high
link speeds. At the moment what is of interest is that because of the speed
reduction the archiving machine has no particular problem with reading the
argus data stream from the sensor machine and storing it to disk. I use a 160
gig disk on the intermediate archive machine so that the local archive can keep
around 2 months of data as a safety backup (more because I can, than because
its useful, several days to a week would be more than adequate, you likely want
to be able to survive a problem on a weekend when you may not be looking for
problems). This way if something happens to the post processing machine which

is the primary data archive or the network between them, the data will be saved
on the archive machine until that is fixed and the data can be transferred and
post processed. Once the data is archived on the archive machine, it gets
transferred via scp over the network to the post processing host. There it
gets saved in the online archive (400 gigs in my case about 5 to 6 months of
data at the present rate) and moves from there off to tape backup in our backup
robot where it is kept basically forever (although an increase in volume may
change our retention policy later). As well this machine runs the post
processing perl scripts which generate the daily reports and as noted above
sometimes run the machine out of memory and cause the scripts to crash. This
of course is no more than inconvenient (even if it managed to crash the entire
machine, which it hasn't yet) because the data is still being faithfully
archived by the archive machine at the sensor. Once the post processing machine
is fixed up the data can be copied across to it and processed as normal. The
post processing machine is also the place that I normally experiment on the
scripts and/or scan the raw argus logs with no danger of impacting the capture
and archiving of the data off the live network.

Now having seen how the data is collected, lets look at the output
of a typical day's archiving and processing. First a complete day of archive
files (the first half of which created the report below) from our commodity
link which averages 35 megabits per second. This should give some sense of the
storage needed for a given speed on an Internet link (I'd expect the data
volume to scale somewhere close to linearly with link speed). It is however
quite traffic dependent, our Westgrid link which is often over 500 megabits
per second with peaks to 900+ megabits per second on a dedicated gigabit
circuit of a multisite grid setup is much smaller than this, but is also only
about 30 hosts running jumbo frames which generate many fewer records (with of
course big internal counts) so your mileage may vary. I have modified the argus
supplied archive script to allow for instance names because I process and
archive more than one link and want to keep the traffic separated by link. I
currently have three archives: one for commodity (the one below), one for
CA*net4 and one for Westgrid as an experimental high speed test bed in case
we ever get that high.

% pwd
/usr/local/argus/com_argus.archive/2005/06/13
% ls -l
total 1557424
-rw-r--r-- 1 argus argus 35545923 Jun 13 01:10 com_argus.2005.06.13.00.00.00.0.gz
-rw-r--r-- 1 argus argus 36558286 Jun 13 02:10 com_argus.2005.06.13.01.00.00.0.gz
-rw-r--r-- 1 argus argus 28902922 Jun 13 03:08 com_argus.2005.06.13.02.00.01.0.gz
-rw-r--r-- 1 argus argus 26556315 Jun 13 04:07 com_argus.2005.06.13.03.00.00.0.gz
-rw-r--r-- 1 argus argus 28848750 Jun 13 05:09 com_argus.2005.06.13.04.00.00.0.gz
-rw-r--r-- 1 argus argus 29253288 Jun 13 06:08 com_argus.2005.06.13.05.00.00.0.gz
-rw-r--r-- 1 argus argus 32840935 Jun 13 07:09 com_argus.2005.06.13.06.00.00.0.gz
-rw-r--r-- 1 argus argus 39232225 Jun 13 08:10 com_argus.2005.06.13.07.00.00.0.gz
-rw-r--r-- 1 argus argus 54435241 Jun 13 09:17 com_argus.2005.06.13.08.00.00.0.gz
-rw-r--r-- 1 argus argus 76061691 Jun 13 10:25 com_argus.2005.06.13.09.00.00.0.gz
-rw-r--r-- 1 argus argus 95854656 Jun 13 11:30 com_argus.2005.06.13.10.00.00.0.gz
-rw-r--r-- 1 argus argus 104160852 Jun 13 12:33 com_argus.2005.06.13.11.00.00.0.gz
-rw-r--r-- 1 argus argus 111222813 Jun 13 13:36 com_argus.2005.06.13.12.00.00.0.gz
-rw-r--r-- 1 argus argus 111448144 Jun 13 14:37 com_argus.2005.06.13.13.00.00.0.gz
-rw-r--r-- 1 argus argus 102526412 Jun 13 15:33 com_argus.2005.06.13.14.00.00.0.gz
-rw-r--r-- 1 argus argus 101504198 Jun 13 16:33 com_argus.2005.06.13.15.00.00.0.gz

-rw-r--r-- 1 argus argus 97979320 Jun 13 17:30 com_argus.2005.06.13.16.00.00.0.gz
-rw-r--r-- 1 argus argus 82283657 Jun 13 18:23 com_argus.2005.06.13.17.00.00.0.gz
-rw-r--r-- 1 argus argus 71820302 Jun 13 19:22 com_argus.2005.06.13.18.00.00.0.gz
-rw-r--r-- 1 argus argus 70560448 Jun 13 20:21 com_argus.2005.06.13.19.00.00.0.gz
-rw-r--r-- 1 argus argus 68249479 Jun 13 21:19 com_argus.2005.06.13.20.00.00.0.gz
-rw-r--r-- 1 argus argus 65421414 Jun 13 22:18 com_argus.2005.06.13.21.00.00.0.gz
-rw-r--r-- 1 argus argus 66636150 Jun 13 23:20 com_argus.2005.06.13.22.00.00.0.gz
-rw-r--r-- 1 argus argus 55889496 Jun 14 00:15 com_argus.2005.06.13.23.00.01.0.gz

An annotated and truncated (to save space) example of a traffic report
file for a 24 hour period ending at 6 AM (so it is processed and waiting when
I get in in the morning) created via cron by the perl scripts postprocessing
argus logs on the post processing host. The scripts that generate this are
available via anon ftp from

ftp.sfu.ca in /pub/unix/argus/argus.traffic.perl.tar.gz

although be warned they are quite ugly, still changing and without warrantee.
The report below is quite butchered both to anonymize the data and because I
have inserted editorial comments via the "(words)" lines below. I typically
edit this with vi and do a search on "Tot" which jumps me to the total lines
of each host. On a normal day with no trouble a 10 minute look through the
file indicates that all is well. When a troublesome host appears there may be
enough information in the detail section to dictate a response, or I may end
up using the ra client to dump the raw argus log and probe deeper in to what
is going on which may in turn cause a request for clarification of what is
going on from the person using the IP in question.

In addition to the security aspects of this, argus is also capable of
doing complete (or as I do selected hosts and address ranges) traffic accounting
down to the port level if desired, of all the hosts on your network. In a
number of cases we have users that are affiliated with SFU, but wish to run
their own domain (in some case because they are startup companies from
University research, or multi site research projects that wish to use a
project domain rather than sfu.ca). In such cases their commodity traffic gets
accounted for (because it attracts traffic volume charges) as a byproduct of
the argus security scanning and if the volume is significant enough, they get
charged for the bandwidth. This comes along essentially for free as a byproduct
of looking for security problems in the data. You will see that noted in a few
places in the report below (the billing data goes in to another file).

An example traffic summary report from a recent Sunday. Note that the
by host traffic appears twice, once for the source host and once for the
destination host so if you add them all up you would get twice the value of
the traffic summary total (which only counts the traffic once). Doing this
correctly ranks the busiest hosts on your network in terms of traffic volume
which is something that I wish to know.

Traffic Summary From: Sun Jun 12 5:58:58 2005 To: Mon Jun 13 5:58:58 2005

 206,657,306,996 Total 145,806,723,952 Out 60,850,583,044 In

(in and out counts are adjusted to reflect out from our network and in to our
 network to give an indication of load on the network. Argus declares the
 source as the host that sends the syn without regard to which side of the

 physical network the traffic is on.)

(external client, pays for bandwidth and thus is accounted for by argus)

aaa.bbb.cc.ddd 41,962,421,623 Tot 39,771,005,841 Out 2,191,415,782 In

 bbb.cc.ddd.ee 1,197,659,246 72,583,979 1,125,075,267
 bbb.cc.ddd.ee:50033 441,253,997 11,700,746 429,553,251

... (9 more hosts)

(www.sfu.ca, normally the #1 bandwidth user, except Sundays)

eee.ff.bbb.aa 31,236,470,372 Tot 30,085,681,542 Out 1,150,788,830 In

(local cable co's web proxy)

 cc.dd.eee.fff 1,297,979,324 1,259,691,372 38,287,952
 cc.dd.eee.fff:80 1,160,999,352 1,123,487,908 37,511,444
 cc.dd.eee.fff:443 136,979,630 136,203,356 776,274
 cc.dd.eee.fff:21 342 108 234

... (9 more hosts)

eee.ff.aaa.a 10,327,873,548 Tot 7,626,300,731 Out 2,701,572,817 In

(SFU web mail server)

... (10 detail hosts)

eee.ff.ccc.dd 8,772,878,396 Tot 3,259,298,186 Out 5,513,580,210 In

(SFU library proxy server)

... (10 detail hosts)

eee.ff.aaa.bb 7,339,041,869 Tot 927,149,225 Out 6,411,892,644 In

(external mail server)

... (10 detail hosts)

eee.ff.aaa.cc 6,579,966,620 Tot 6,367,286,382 Out 212,680,238 In

(cgi web server, licensed software distribution server which is most of this
traffic)

... (10 detail hosts)

eee.ff.aaa.dd 5,637,568,833 Tot 5,244,821,091 Out 392,747,742 In

(internal mail server)

... (10 detail hosts)

eee.ff.aaa.ee 4,916,276,147 Tot 1,680,363,646 Out 3,235,912,501 In

(general time share server)

... (10 detail hosts)

eee.ff.aaa.ff 4,052,547,078 Tot 3,657,692,982 Out 394,854,096 In

(SFU web portal)

... (10 detail hosts)

eee.ff.eee.ff 3,649,121,236 Tot 1,942,566,046 Out 1,706,555,190 In

(departmental web server)

... (10 detail hosts)

eee.ff.ggg.hh 3,428,989,162 Tot 3,311,345,002 Out 117,644,160 In

(departmental web server)

... (10 detail hosts)

eee.ff.iii.jj 3,368,546,694 Tot 3,298,324,986 Out 70,221,708 In

(demonstration traffic alert machine, not a server, running file sharing,
 after a few days, complaint to owner. Started Saturday in this case, dealt
 with on Monday)

 aa.86.101.181 1,391,068,293 1,373,987,241 17,081,052
 aa.86.101.181:1234 1,391,068,293 1,373,987,241 17,081,052

 aa.85.240.114 580,779,894 563,184,426 17,595,468
 aa.85.240.114:8000 580,779,894 563,184,426 17,595,468

 aa.87.106.118 264,644,874 259,217,846 5,427,028
 aa.87.106.118:8000 264,644,820 259,217,792 5,427,028
 aa.87.106.118:61907 54 54 0

 aa.80.170.122 118,948,790 115,119,693 3,829,097
 aa.80.170.122:8000 118,948,790 115,119,693 3,829,097

 bbb.95.39.184 102,453,410 99,853,024 2,600,386
 bbb.95.39.184:8000 102,346,300 99,760,726 2,585,574
 bbb.95.39.184:80 107,110 92,298 14,812

 ccc.121.230.70 95,583,668 93,861,359 1,722,309
 ccc.121.230.70:1234 95,581,176 93,859,836 1,721,340
 ccc.121.230.70:80 2,492 1,523 969

 ddd.144.33.22 92,716,874 90,520,369 2,196,505
 ddd.144.33.22:8000 92,608,501 90,459,519 2,148,982
 ddd.144.33.22:80 108,373 60,850 47,523

 ee.68.229.6 91,377,936 89,049,094 2,328,842
 ee.68.229.6:8000 91,268,832 88,956,280 2,312,552

 ee.68.229.6:80 109,104 92,814 16,290

 ff.70.1.28 83,777,516 80,825,224 2,952,292
 ff.70.1.28:8000 83,569,794 80,642,565 2,927,229
 ff.70.1.28:80 207,722 182,659 25,063

 gg.183.123.109 76,282,669 74,937,473 1,345,196
 gg.183.123.109:1234 76,274,954 74,933,366 1,341,588
 gg.183.123.109:80 7,715 4,107 3,608

 hhh.250.222.22 59,916,599 58,493,609 1,422,990
 hhh.250.222.22:1234 59,910,297 58,490,019 1,420,278
 hhh.250.222.22:80 6,302 3,590 2,712

eee.ff.aaa.gg 2,916,248,616 Tot 467,369,585 Out 2,448,879,031 In

(SFU proxy server)

... (10 detail hosts)

aaa.bbb.cc.eee 2,886,902,688 Tot 2,815,622,690 Out 71,279,998 In

(external customer, traffic charged)

... (10 detail hosts)

aaa.bbb.cc.ff 2,813,977,499 Tot 2,291,693,799 Out 522,283,700 In

(external customer, traffic charged)

... (10 detail hosts)

eee.ff.bbb.gg 2,040,721,927 Tot 1,868,208,092 Out 172,513,835 In

(Caucus web server)

... (10 detail hosts)

eee.ff.ccc.dd 1,846,565,050 Tot 986,145,578 Out 860,419,472 In

(client machine running file sharing in the warn range)

... (10 detail hosts)

bbb.cc.ddd.ee 1,654,144,904 Tot 133,277,341 Out 1,520,867,563 In

(external host out on the net connecting to a collection of our hosts)

... (10 detail hosts)

fff.gg.hhh.i 1,627,185,047 Tot 95,338,709 Out 1,531,846,338 In

(external host out on the net)

... (10 detail hosts)

eee.ff.aaa.hh 1,604,405,412 Tot 1,228,336,032 Out 376,069,380 In

(Webct server)

... (10 detail hosts)

cc.dd.eee.fff 1,581,765,492 Tot 1,475,340,260 Out 106,425,232 In

(external host out on the net)

... (10 detail hosts)

ff.gg.hhh.181 1,394,660,278 Tot 1,377,425,329 Out 17,234,949 In

(cable proxy server)

... (10 detail hosts)

ii.jj.kkk.203 1,325,185,249 Tot 1,284,232,777 Out 40,952,472 In

(cable proxy server)

... (10 detail hosts)

ll.mm.nnn.204 1,260,377,195 Tot 1,154,876,720 Out 105,500,475 In

(cable proxy server)

... (10 detail hosts)

jjj.kk.lll.m 1,251,169,940 Tot 969,072,774 Out 282,097,166 In

(affiliated research project, their own address space / domain, traffic level
 monitored but not charged unless volume very high)

... (10 detail hosts)

eee.ff.bbb.87 1,191,565,802 Tot 1,130,915,628 Out 60,650,174 In

... (10 detail hosts)

eee.ff.ggg.h 1,150,255,995 Tot 1,103,605,105 Out 46,650,890 In

(departmental web server)

... (10 detail hosts)

eee.ff.ww.bad 1,141,962,121 Tot 403,824,967 Out 738,137,154 In

(wireless user file sharing)

 aa.80.118.27 93,630,648 1,718,526 91,912,122
 aa.80.118.27:2006 93,630,432 1,718,418 91,912,014
 aa.80.118.27:2296 216 108 108

 bb.8.234.122 47,632,357 22,536,831 25,095,526
 bb.8.234.122:25573 47,630,311 22,534,785 25,095,526
 bb.8.234.122:17415 2,046 2,046 0

 cc.140.27.158 43,680,569 18,330,765 25,349,804
 cc.140.27.158:25573 43,680,569 18,330,765 25,349,804

 dd.81.149.213 43,577,804 42,281,850 1,295,954
 dd.81.149.213:2520 43,577,642 42,281,796 1,295,846
 dd.81.149.213:1561 162 54 108

... (6 detail hosts)

eee.ff.bbb.c 1,133,555,346 Tot 451,673,578 Out 681,881,768 In

(DNS server should usually look like this, a large number in the top position
 indicates a problem that needs looking in to ...)

 aaa.225.87.43 25,406,642 10,755,404 14,651,238
 aaa.225.87.43:53 25,406,642 10,755,404 14,651,238

 bbb.98.98.1 25,321,537 10,132,338 15,189,199
 bbb.98.98.1:53 25,321,537 10,132,338 15,189,199

 cc.93.117.162 23,721,275 9,641,166 14,080,109
 cc.93.117.162:53 23,721,275 9,641,166 14,080,109

... (7 detail hosts)

eee.ff.ggg.hh 1,065,623,058 Tot 1,024,001,449 Out 41,621,609 In

(departmental web server)

... (10 detail hosts)

Some 30 hosts later we come to the end of the morning traffic report. Now
lets see how successful all this is in real life.

This is a selection of annotated and anonymized incident logs from our
network.

 External report of an IRC control bot running on a Unix box.

 Although traffic in the argus logs looked normal, an account was found to be
compromised and running an IRC client. When the account was disabled, the mail server in
the department was DDOSed (may still be in fact) indicating the report was indeed correct.
Argus wouldn't have found this because IRC clients commonly run on this and many other
of our hosts and the traffic wasn't unusual.

 DNS traffic doubled in the last 24 hours. A look at the argus logs (and then tcpdump)
indicated a looping query from a remote host. Block at the border and notify the owner (not
directly security, but performance impacting on a base service).

 Spam complaint as a result of forged Received: header

> Received: from eee.ff.xxx.yyy by 65.87.aaa.bbb; Thu, 24 Jun 2004 20:54:29
> +0100

looks legit, except the source address isn't in use on our network and
the connection doesn't show up in the argus logs (and the receiving host is
a cable modem and thus likely the source of the spam trying to cover its
tracks / fool automated reporting systems, which it will). We are pretty much
the only ones that can say for sure what is going on here, mostly because we
have the argus logs to verify someone on our net didn't steal an unused IP.

 MSSQL breach, machine used to transfer movie files:

eee.ff.aaa.bbb total traffic: 1,487,088,538
 eee.ff.aaa.bbb 195.128.cc.dd 1183 0 15,011,404

 eee.ff.aaa.bbb 195.128.cc.dd 1350 0 15,007,616

 eee.ff.aaa.bbb 195.128.cc.dd 1371 0 14,255,016

 eee.ff.aaa.bbb 195.128.cc.dd 1384 0 15,024,208

This is an interesting side effect of an old argus bug (this log is
from an older version of argus too). These are actually an ftp where argus has
inverted source and destination port number for (the real dest port is
constant, but not 20 or 21). Whichever ftp server they use transfers in ~15
meg chunks per transfer which is an easily seen (and suspicious) pattern in
the data in the morning traffic report (or at least used to be).

This suggests that a filter that selects for this (~ 15 meg chunks from
multiple source ports to a single dest port) would be useful in finding
compromised hosts in raw argus data. This was caught when the user machine
suddenly started using over a gig per day in bandwidth (to many different
hosts although only one is shown here). This bug is corrected (and the reverse
port test hasn't been added yet) in the current reporting scripts and argus
version.

 DOS with forged source addresses from one of our nets.

This was thought to be a compromised NT machine which was removed from the
network. As we will see in October, this was incorrect, a Sun on this same network is the
culprit and they laid low for the next several months with a compromised machine (argus
isn't perfect!). Had there been an argus sensor on this network segment (rather than a router
hop away) I could have queried the argus log for the source MAC address and identified
the machine.

 Traffic alert bit torrent:

Not security related but rather traffic related (since this is on the

traffic charged commodity link) before the Packeteer recognized
BitTorrent, which of course didn't help the person running this because
argus understands the effect of BitTorrent just fine, just a little
later in the consume cycle.

eee.ff.aaa.b total traffic: 8,969,630,470.935
 12.151.aaa.bb eee.ff.aaa.b 6881 173 185

 12.202.aaa.bb eee.ff.aaa.b 6881 192 0

 12.214.aaa.bbb eee.ff.aaa.b 6881 2,551 1,278,001

 12.217.aaa.bbb eee.ff.aaa.b 6881 288 0

 This is an X rated site that was streaming video in at some 7 megs per
second according to the Packeteer. When the owner of the machine was queried
it turned out that an admin had left a machine in a lab without setting a
screen password on X and some helpful passing student had indicated this is a
bad idea by accessing video on a porn site (undoubtably knowing what would
happen).

While I could have found both sides of the conversation with the
Packeteer, given the source address from the packeted, argus was an easier
bet to find the destination.

This is also an example of argus ra client output rather than one of
the post processed reports.

26 Jul 04 15:59:15 S tcp aaa.bb.cc.dd.1801 -> 209.120.ccc.bb.80
216 382 11664 552068 RST
26 Jul 04 15:59:17 S tcp aaa.bb.cc.dd.1803 -> 209.120.ccc.bb.80
487 872 26298 1260232 RST
26 Jul 04 15:59:15 S tcp aaa.bb.cc.dd.2138 -> 209.120.ccc.bb.80
196 347 10907 497150 RST
26 Jul 04 15:59:17 tcp aaa.bb.cc.dd.1834 -> 209.120.ccc.bb.80
4 3 216 4542 RST

Sep 1 2004: Copyright violation. note the several day lag after the offense
 looking back in the argus log for Aug 27 verified that the accused
 host was in fact doing file sharing at this time.

Title:Norton Internet Security 2004
Infringement Source:eDonkey
Initial Infringement Timestamp:27 Aug 2004 18:29:05 GMT
Recent Infringement Timestamp:27 Aug 2004 18:29:05 GMT

 Complaint from off site about a suspicious connection attempt

External email complaint about one of our hosts that showed up as trying to
connect via ssh. Our argus logs make it look a lot more like a compromise
(from the volume of data transferred). When the remote site looked more closely

after being advised of that they discovered that they had in fact been
compromised and logged in to from a number of places in addition to us. Since
I didn't see one of the characteristic ssh attack patterns from our host I
don't think we were the source of the original breakin, but rather just
another compromised host being used to log in:

06 Oct 04 07:56:51 * tcp ccc.dd.aa.bbb.4305 -> aaa.bbb.ccc.dd.22
169 123 14049 26023 CON
06 Oct 04 07:57:52 * tcp ccc.dd.aa.bbb.4305 -> aaa.bbb.ccc.dd.22
67 39 5234 4442 FIN

A look back at our host in the argus logs indicated that they had been
running an IRC client for a number of days that apparently got hijacked an
hour or so before the login to the machine above. As noted, that isn't enough
suspicious or unusual activity to cause comment in and of itself without the
external complaint.

 Yahoo robot goes nuts

Our first case (or first detected case) of rabid search engine robots.
A yahoo robot was sucking down the entire contents of a large MP3 repository
on our site. The original alarm was again the Packeteer with a 25 megabit per
second MP3 file transfer rate. Argus indicated this was a yahoo robot (from
DNS) and the machine on our end was a colocate who pays for bandwidth. Rather
than do anything I notified both sites of the activity. Never heard back from
yahoo, but the machine owner said it appeared to be transferring down the
entire contents (rather than just the file names to index) of their large
store. They ended up having to block the netblock in their firewall to
discourage it from doing this. Again not security related but certainly cost
related (although not directly our cost this time, the machine owner was
none the less grateful for the heads up before he would have gotten a largish
bill).

 DOS to machine in Russia (breach from 3 months back)

The attacker (or another one, since this machine was root kitted a few
days before this) on the same machine that was using forged source addresses
earlier in this list got careless this time and didn't forge the source
addresses when DOSing someone else in Russia. They had also laid low in the
months in between and used the host only for IRC which it was running anyway
and thus staying below our radar:

xxx.yy.aaa.b 2,175,990,947 Tot 2,095,667,715 Out 80,323,232 In

 80.97.aa.bb 1,860,232,546 1,860,232,546 0
 80.97.aa.bb:58131 102,254 102,254 0
 80.97.aa.bb:51720 101,953 101,953 0
 80.97.aa.bb:13672 101,867 101,867 0
 80.97.aa.bb:31552 101,695 101,695 0
 80.97.aa.bb:61470 101,652 101,652 0
 80.97.aa.bb:30519 101,437 101,437 0

The large amount of transmit bytes with no receive bytes makes things
very suspicious. When the Sun was carefully checked over they found it had
been compromised and root kitted a couple of days previous to this probably
via the IRC connection since there wasn't anything else suspicious in the
argus logs at the time of the breakin.

 Copyright violation

Title: Shrek 2
Infringement Source: eDonkey
Initial Infringement Timestamp: 21 Oct 2004 08:01:01 GMT
Recent Infringment Timestamp: 21 Oct 2004 08:01:01 GMT
Infringer Username:
Infringing Filename: Shrek 2 - German - MVCD Scr By Magic Roots.mpg
Infringing Filesize: 726681604

Which turned out to be yet another compromise from someone on tdial.net
in Germany:

 Yep, the machine was compromised on Sunday morning. You will likely
need to reinstall the entire machine to be safe because you can't know what
all was changed (this person from Germany is a frequent attacker here and is
quite good at it). The accesses from aa.bb.cc.ddd are an SFU person (at least
an SFU person is reading email from there), the attack came from 217.85.aa.bb
which is a dialup line in Germany. I'd guess the original compromise was some
time before this breakin, because the attacker looks to have connected to
a pre existing program and started a data transfer (probably movie files from
past experience).

 ask.com robot eating 6 gigs per day.

This one got away with it for several days, because it is a
bioinformatics web machine that sometimes does large transfers offsite. I only
looked at it more closely when the transfer went on day after day which is
unusual and it again turned out to be rabid search engine robots (3 or 4 this
time) downloading the entire site over and over. Again a block in the firewall
was required to stop it (robots.txt files were ignored).

 services9 virus comes through

One of your hosts looks to be being a botnet controller for the latest
PC virus (services9.exe). Times are PST:

14 Mar 05 14:16:03 tcp eee.ff.aaa.bbb.3224 -> aaa.bb.ccc.dd.6667
1 2 80 135 CON
14 Mar 05 14:16:38 * tcp eee.ff.bbb.ccc.1915 -> aaa.bb.ccc.dd.6667
3 4 214 270 CON

Of interest here (once the first two virused machines were IDed) is the
IRC controller in use. Scanning the argus logs for this address (aaa.bb.ccc.dd)
identified additional machines that were infected. The first controller was on

a .edu site who promptly took it down when advised, but the controller just
moved (presumably via dynamic DNS) to a new host at a hosting company who didn't
respond (they may or may not have done something about it). It took almost
a week for the AV companies to begin detecting this (our folks figured out for
them selves how to clean it and spread the info to the rest of our community
until the AV kicked in). When a machine was thought to be disinfected, re
enabling it and checking argus for connection attempts to IRC confirmed if
the cleaning was successful or not (in a number of cases it hadn't been).

 External complaint about machine scanning:

Machine scanning out for port 1433, a look back in the argus logs
indicated that it had been compromised 5 months before this in the year before
and apparently not used/needed except for low level probes for since then.
This is not unusual for compromises our way. I assume they have so many
machines it takes time for them to get around to them. When they do we
normally detect the activity and whack them in short order.

 anon ftp config goes wrong

 This is mighty suspicious (and the start of the traffic ramp up) an
ftp attempt from a dial up line in Greece, which later looks to have become
successful. By the 10th it had risen from not making the top 30 traffic
generators to being mid list (at about 4 gigs) with a steady progression
over the last few days.

07 Apr 05 00:23:52 d tcp eee.ff.aa.bb.20 -> 144.139.aa.bbb.1198
5 3 1703 166 FIN
07 Apr 05 00:23:53 s tcp 144.139.aa.bbb.1199 -> eee.ff.aa.bb.21
17 19 1067 2261 CON
07 Apr 05 00:24:47 tcp 61.179.aa.bbb.33087 ?> eee.ff.aa.bb.80
1 1 54 54 RST

a couple of days later discovered the admin had blocked ftp but not
cleaned out the directory and traffic was still moving out via the web (which
the continuing traffic spike brought to my attention and caused me to ask about
having seen both ftp and http traffic from the site during the breach). After
that it dropped off the top 30 list as it should have.

Knowing I was writing this paper, a nice virus writer arranged to
infect one of our wireless users with a spamming trojan horse so you could see
the spam detector in operation (and as a side effect find a problem for me,
since the wireless user shouldn't have been able to infect backbone machines
but managed to do so). While in reality this got caught because the machines
were all scanning for port 135 and 445 and set of the scan detector which got
them all whacked, if that had not happened they would have been caught the
next morning because the morning reports include a .smtp file which indicates
someone has been spamming:

-rw-r--r-- 1 argus argus 49070 Jun 22 06:27 Tue.c4_argus
-rw-r--r-- 1 argus argus 9493929 Jun 22 06:20 Tue.c4_argus.all.hosts
-rw-r--r-- 1 argus argus 927 Jun 22 06:27 Tue.c4_argus.scans

-rw-r--r-- 1 argus argus 69949 Jun 22 07:27 Tue.com_argus
-rw-r--r-- 1 argus argus 69859098 Jun 22 06:33 Tue.com_argus.all.hosts
-rw-r--r-- 1 argus argus 18637 Jun 22 07:28 Tue.com_argus.scans
-rw-r--r-- 1 argus argus 314 Jun 22 07:28 Tue.com_argus.smtp

Dumping the .smtp file we see that the first host (a wireless user) started
spamming somewhere between 18:00 and 19:00 (because it needs to have hit 50
hosts before the alarm is tripped it may have started earlier but not hit its
stride til the next hour). The next two hours see a couple more hosts doing
the same thing:

% cat Tue.com_argus.smtp
com_argus.2005.06.21.19.00.00.0.gz eee.ff.aa.228 57
com_argus.2005.06.21.20.00.00.0.gz eee.ff.ccc.10 292
com_argus.2005.06.21.20.00.00.0.gz eee.ff.aa.228 87
com_argus.2005.06.21.21.00.00.0.gz eee.ff.ccc.10 225
com_argus.2005.06.21.21.00.00.0.gz eee.ff.aa.228 72
com_argus.2005.06.21.21.00.00.0.gz eee.ff.ab.234 75

Now is the time to use the argus ra client against the archive files
to see whats happening. To make that easy the archive file names involved are
in the .smtp report:

% ra -r /usr/local/argus/com_argus.archive/2005/06/21/com_argus.2005.06.21.19.00.00.0.gz -nn
host eee.ff.aa.bbb
21 Jun 05 18:58:10 tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 6 6
427 324 RST
21 Jun 05 18:58:41 s tcp eee.ff.aa.bbb.1028 -> hhh.ii.j.kk.1863 8 7
523 1559 FIN
...
21 Jun 05 19:00:48 * tcp eee.ff.aa.bbb.1046 -> gg.hh.iii.jj.25 111 89
93106 6181 FIN
21 Jun 05 19:00:49 * tcp eee.ff.aa.bbb.1063 -> dd.ee.fff.gg.hh 119 93
91785 6339 FIN
21 Jun 05 19:00:49 * tcp eee.ff.aa.bbb.1074 -> iii.jjj.kk.lll.25 129 117
91888 6862 FIN

We see that this is a case where the trouble started earlier (which is
often the case) so we need to go back an hour:

vanepp@r2d2% ra -r
/usr/local/argus/com_argus.archive/2005/06/21/com_argus.2005.06.21.18.00.00.0.gz -nn host
eee.ff.aa.bbb
21 Jun 05 18:48:57 d tcp eee.ff.aa.bbb.2123 -> bb.cc.ddd.e.80 8 8
913 8325 FIN
...
21 Jun 05 18:54:17 tcp lll.mmm.nn.ooo.3368 -> eee.ff.aa.bbb.113 1 1
74 54 RST
21 Jun 05 18:54:28 s tcp eee.ff.aa.bbb.1987 <-> vv.uu.jjj.kk.25 3 0
186 0 TIM
21 Jun 05 18:54:05 * tcp eee.ff.aa.bbb.1028 -> rrr.pp.q.ww.1863 93 149
6700 53803 CON
21 Jun 05 18:54:05 d tcp eee.ff.aa.bbb.1027 -> xx.yy.zzz.aa.1863 7 6
524 579 FIN
21 Jun 05 18:54:09 * tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 12 16
973 5204 CON
...

I'm going to cheat a bit for space reasons here. The connection
aaa.ttt.aaa.kkk.7000 repeats a bunch more times in the full data. Chances are
good that this is the host/port controlling the trojan. Having this information
it is now profitable to do this over the next few hours or days (and the last
few days to see if there are any more that didn't get caught previously, one
of the advantages of keeping historical files):

% ra -r /usr/local/argus/com_argus.archive/2005/06/21/com_argus.20006.21.18.00.00.0.gz -nn
host aaa.ttt.aaa.kkk
21 Jun 05 18:54:10 udp eee.ff.bbb.d.53 <-> aaa.ttt.aaa.kkk.32768 1 1
244 97 CON
21 Jun 05 18:54:09 * tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 12 16
973 5204 CON
21 Jun 05 18:54:10 rtp aaa.ttt.aaa.kkk.32768 <-> eee.ff.bbb.c.53 1 1
93 220 CON
21 Jun 05 18:55:10 tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 6 6
447 324 CON
21 Jun 05 18:56:10 tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 6 6
447 324 CON
21 Jun 05 18:57:10 tcp eee.ff.aa.bbb.1035 -> aaa.ttt.aaa.kkk.7000 7 6
521 324 CON

First hour is all the same machine. Two items of note here: argus
records get written at connection close, so by default (i.e. here) they aren't
in time order. There is a client to sort them if needed, but I rarely use it
and just remember what I'm looking at. In this case the connection from the
attacker on port 7000 started at 18:54:09 and is therefore really before the
DNS lookup at 18:54:10 which comes before it in the listing (because the DNS
transaction was short unlike the control connection). This is presumably
the attacker seeing what its found, its unclear why, perhaps the attack
modifies depending on what DNS says in some cases.

So suppress the first host and see who else has been caught:

% ra -r /usr/local/argus/com_argus.archive/2005/06/21/com_argus.20006.21.19.00.00.0.gz -nn
host aaa.ttt.aaa.kkk and not host eee.ff.aa.bbb
%

No one new next hour but three new players by the hour after that:

vanepp@r2d2% ra -r
/usr/local/argus/com_argus.archive/2005/06/21/com_argus.2005.06.21.20.00.00.0.gz -nn host
aaa.ttt.aaa.kkk and not host eee.ff.aa.bbb
21 Jun 05 20:03:02 udp aaa.ttt.aaa.kkk.32768 <-> eee.ff.bbb.c.53 1 1
93 220 CON
21 Jun 05 20:03:01 * tcp eee.ff.aa.ccc.2652 -> aaa.ttt.aaa.kkk.7000 13 15
1006 5372 CON
21 Jun 05 20:03:02 udp eee.ff.bbb.d.53 <-> aaa.ttt.aaa.kkk.32768 3 3
564 252 CON
...
21 Jun 05 20:11:53 udp aaa.ttt.aaa.kkk.32768 <-> eee.ff.bbb.c.53 1 1
97 244 CON
21 Jun 05 20:11:53 udp aaa.ttt.aaa.kkk.32768 <-> eee.ff.bbb.c.53 1 1
93 220 CON
21 Jun 05 20:11:02 tcp eee.ff.aa.ccc.2652 -> aaa.ttt.aaa.kkk.7000 6 6
447 324 CON

...
21 Jun 05 20:21:58 udp aaa.ttt.aaa.kkk.32768 <-> eee.ff.bbb.d.53 1 1
86 212 CON
21 Jun 05 20:21:02 tcp eee.ff.aa.ccc.2652 -> aaa.ttt.aaa.kkk.7000 6 6
447 324 CON
21 Jun 05 20:21:44 tcp eee.ff.aa.ddd.1028 -> aaa.ttt.aaa.kkk.7000 4 4
298 216 CON
21 Jun 05 20:21:57 * tcp eee.ff.ccc.dd.1907 -> aaa.ttt.aaa.kkk.7000 13 13
1006 3775 CON

And another 4 hosts after that in later logs. Far more valuable from
my point of view is that the instigator of this attack was a wireless user,
and thus likely a laptop, infected at home and brought on campus. There is only
one problem with this, the netbios ports are supposed to be blocked from the
wireless networks on to the campus backbone and thus this machine shouldn't have
been able to infect backbone hosts (but they clearly did get infected by the
same virus, making the laptop the likely vector). So switch log files from
argus beyond my border to the flow log from the wireless authentication system
we use. This log is GMT which is why the different time stamp:

Jun 22 01:55:34 auth3.sfu.ca 172720520 0 00:02:2d:7c:xx:yy tcp eee.ff.aa.bbb:1398
eee.ff.kkk.jjj:445 eee.ff.aa.bbb:1398 eee.ff.kkk.jjj:445 168 88 userid

This selected entry indicates that the infected host managed to get a reply
from a probe on port 445 to a backbone host. It turns out one of the access
lists that is supposed to block such connections was missing and in fact
allowing the wireless network to infect the backbone which it shouldn't have
been able to do. Unfortunately the last time I did an analysis like this one
the infected host was in fact a laptop that had been brought from home to an
office and attached to the wired network (which isn't blockable for policy and
AD reasons), and so I never noticed that one of the wireless networks was in
fact not properly protected (we have 4 or 5 wireless subnets, so the correct
block logs appear on most of the wireless networks, adding to the false sense
of security). So writing this paper has increased the security of our network,
and perhaps reading it will allow you to increase the security of yours.

One last cute argus trick: argus keeps two traffic counts, the data
length (from the IP header) of all packets (which under reports total traffic
volume slightly because of padding in less than minimum length packets), and
application level data which for TCP is the data (minus headers and
retransmitted packets) that is presented to the application after tcp reassembly
and retransmissions. Which count gets reported is changed by a command line
flag to the ra client. By default the data length is reported, adding a -A
flag to the command reports the application data. While checking the accounting traffic counts
from argus one day I had occasion to process the same archive
records with and without the -A flag. Most of the hosts in the list show about
a %10 increase from application to traffic counts due to the headers being
counted in the traffic count. On one particular set of hosts (all belonging
to the same customer) the increase is closer to %50. Argus flags TCP
retransmissions in the status field, but both sets of hosts were occasionally
flagged as retransmitting so I hadn't thought much about it. It turns out
(when we got out the trusty sniffer) that this set of hosts for reasons unknown
retransmit on almost every connection. While I would think that this would
impact server performance, as far as I know the owner of the machine has not

done anything about fixing this. Of course that could be because I don't know
what I would even start looking for to fix it (although configuration would
be a good bet), because I don't know what you could do to cause it. Whatever
it is they have done it consistently (which argues configuration of some kind)
on several hosts and the hosts are similar to other machines on the same
network segment that don't behave like this, so it appears to be host problem
rather than a network problem. The bottom line is that argus can tell you
all sorts of interesting things that you probably didn't know (and in some
unfortunate cases, which you were happier when you didn't know) about your
network.

Now having looked at why having a complete record of the traffic on
your net is a good idea, lets change focus and look at why (if your connection
is fast enough) collecting this data becomes expensive and hard. First let me
express my prejudice against using netflow records from your router (which
will certainly work and is quite popular) to collect this data. In my view I
want our routers routing traffic first last and always. At high link speeds
thats hard enough in and of itself. Adding the load of collecting netflow data
can either compromise the routing or result in loss of netflow records at high
volumes (when you may want them most to find out what is causing the high
traffic) to give preference to routing. I believe that the correct way to do
this is to let the router route, and add a network tap to the link and have a
dedicated box or boxes running argus (or ipaudit) collect the flow data. That
way the tap protects the network from the netflow collector and at most you can
lose the netflow data not effect the network in any way. It also lets you do
whatever it takes to insure that you don't lose any of that data if you don't
want to and can afford to (which may well be the limiting factor).

One of several advantages that argus has is that it only needs the
headers of the packet to produce the flow records. While you can choose to
collect up to the first 512 bytes of data of a flow, if you don't do so, argus
only looks at the packet headers, not the data, which may ease privacy concerns
around collecting this data. The very first thing to do when considering
collecting flow data is to consider the privacy implications and your site's
policy around privacy. You likely want to consider the argus logs confidential
records, and that may impact your retention policies of the data. You certainly
want to have considered who is allowed access to the data in relation to your
site's policy on privacy.

Only needing the first 128 bytes or so of a packet can be a big win
in required I/O bandwidth at high link speeds (high starting, as noted in my
case as slow as 35 megabits per second) becoming ever more critical on a fully
loaded gig link and a major crisis requiring special hardware on a 10 gig link. An additional
benefit with argus is that it can happily collect only one side
of a full duplex connection (with another physical box collecting the other
side of the connection of course, half a connection isn't a lot of use) and
later merge the two data streams together to recreate an archive just as if
there were two interface cards in a single box collecting both sides of the
link at once. This is important (especially at 10 gig) because it cuts the
I/O performance required of the capture box in half and may be the difference
between being able to capture the data and losing some of it.

The real win against an IDS (at the cost of doing a lot less than an
IDS of course) is that since argus is collecting everything that comes by

without attempting to select it at all (other than to classify it in to a
flow), you aren't attempting to do a textual search at wire speed to see if
this is something bad that you should be collecting. This is an enormous
performance win at high link speeds in the amount of machine performance you
need to keep up with the link, since searching, even with fancy algorithms
such as Boyer-Moore, or better yet perfect hashes, still increases the required CPU power
and memory required very fast the more rules you need to search for
(and then it may miss things you would like to see because, they didn't trip
a signature). The ideal case is of course use both or in a couple of cases I
know of, all three of argus (for the audit record of anything that gets missed
by the other two devices), and an IPS fronting an IDS to get the IDS alert
rate down to something that can be managed by an affordable number of staff.

While I expect I'm stating the obvious to most of the folks here I will
point out that bandwidth can also be limited by the memory and bus speeds of
the host computer, device drivers, kernel configuration and undoubtably many
other things. All of these things have to be fast enough before you can achieve
anything even close to the rated speed of the network and making them so can
be a difficult task.

On a gigabit link with a PCI bus (PCIX or one of the newer ones are
better than this of course) you are getting close to the maximum bus bandwidth
followed closely by them maximum memory bandwidth available (which is being
shared with the CPU as is the bus bandwidth) just to keep up with a fully
loaded full duplex link. You want your solution to be able to keep up with a
fully loaded preferably small packet (the worst performance case) link because
if your attacker is aware you have such a system on your link they may well
use a zombie net to supply the maximum line rate of data to your net in the
hope that their attack will be what the over loaded monitor host drops letting
them get away with the attack. If you can afford a monitor system that can do
full link speed, this isn't a defense that works against you (although the
traffic volume may in any case make your link or systems unusable).

My argus capture box is a Tyan Thunder motherboard with dual 1.2
gigahertz Athelon processors and SysKonnect GigE fibre cards. It is now about
4 years old and long in the tooth (in fact probably obsolete for even full
speed Gig as we will see). At the time they were new, the pair of them running
netperf, out of memory, in to a cross over fibre cable could achieve about
1.6 gigabits per second full duplex. It is unclear whether the bottleneck was
PCI bus bandwidth, memory or kernel / driver inefficiencies from older kernels,
but it is likely one of those, because the SysKonnect cards could achieve
around 995 megabits per second one way on that same hardware.

One thing this indicates is that you should get the performance tools
(our HPC guys prefer netperf, but iperf and I'm sure others are also around)
and test your chosen configuration's performance preferably before you buy it
but that isn't always easy. All hardware isn't created equal and it most
certainly can be and probably will be the limiting factor on performance.

I'm lucky enough to have our HPC folks be one of the nodes in the
Westgrid [2] grid computing cluster. From my point of view this is wonderful
because they have high speed expensive toys such as a 200 Terabyte file store
that can fill a Gig E pipe out over CA*net4 and a bunch of folks with clue
that know how to actually get that performance out of them. I'm lucky because

I'm not officially connected to Westgrid, but the file store sits in our
machine room and the fibre off to BCnet and then CA*net4 is my responsibility
and passes by (and since it was near, passes through) my multiport optical tap.
I also have a gig capable sniffer that connects to that multiport tap. Thus
when they manage to break things in interesting ways I get to help diagnose the
problem without having any responsibility for doing anything about it. This is
the best of all possible worlds as far as I'm concerned and since they get
sniffer traces when there are problems both sides are happy. The relevance of
this to the current discussion is two fold: first, this machine provides my
benchmark for a machine that I should take seriously as being able to fill a
gig pipe with useful work. It is something like 4 filled 19 inch racks, needing
half a dozen 30 amp power circuits to power it and a good part of a multiton
airconditioner to cool it. It can get pretty much a full gig pipe to disk or
tape because I've seen it do it, and may be capable of even more than that if
we have the data path to feed it (late data says an upgrade may be required to
go to 10 gigE). The moral of this story is that you need a substantial machine
(which probably isn't going to fit beside your desk because of power and
cooling requirements) to get useful work done while keeping a gig link busy
from a single machine. It also means that on a fast link you may need a
substantial machine to successfully capture and archive the audit data even
though argus manages to reduce the input line rate by 30 to 1 or perhaps even
higher when it produces the records of the flows that you then need to get to
disk.

The second thing is this machine (and Westgrid in general) provides an
illuminating practical test bed for testing capture performance with argus.
I deployed one of my sensor boxes with dual SysKonnect Gig cards off an
optical tap in the Westgrid fibre. Then one of the Westgrid folks arranged a
quick netperf test at ~950 megabits per second to an off site Westgrid host
when the network was quiet. The argus sensor was not archiving to disk on the
sensor but rather writing to another host via a socket. The interesting result
of this test (which was with a stock FreeBSD kernel with the BPF buffer maxed)
was that argus caught less than %50 of the traffic that actually passed over
the link. The bpf packet loss counter was reporting a fair bit of loss, but I
suspect (but didn't poke too far) that more of the loss was occurring at the
device driver and possibly kernel buffer areas because the libpcap reported
loss wasn't anywhere near the real loss. There are at least three places where
packet loss in a libpcap application can take place, the first two are
invisible to libpcap so you need to go poking in to the kernel log files and
error counters when you discover packet loss. We then switched to a SUSE
Linux 2.6 kernel tuned for HPC use that Westgrid uses on one of their clusters
with about the same results. Luckily I was moaning about this on the argus
developers list and someone that had been at SANE in Europe pointed me at the
linux ring buffer code available from the author of ntop at www.ntop.org. This
is a kernel mod that truncates the packet at the kernel level to whatever the
slice length is, then uses mmap calls to bypass all the kernel buffering and
kernel / userland copies and maps the page directly in to a modified libpcap
stub in the user process. You can (and obviously should) boost the size of the
ring buffer (although you may have to increase the compiled in kernel memory
limit to get it big enough) I believe we started with 50 megs for the capture
buffer. With that in place we appear to usually be able to keep up with a full
speed netperf at ~950 megs per second using 9K jumbo frames (a close to ideal
traffic mix for good performance though, small packets would likely perform
much worse). If you are looking to monitor gig links, this is a fine place to

start since this is using the open source version of argus. I expect the
correct thing to do (although I currently don't have another largish machine
to do it with) is to split the sensor boxes in two. One gig card with the ring
buffer code in each box capturing one half of the connection. With that in
place I expect we could keep up with a full speed gig link even with my oldish
hardware. We see, while not trivial nor cheap, it is possible to do a good job
on a gigabit link with enough care and attention (and measurement!).

The exciting time comes when we are talking about a 10 gig link. I'll
note that I don't have any direct experience here yet (we may have lit our
first 10 gig link about the time this paper is presented if my luck holds) but
argus's author also has a commercial version of argus in addition to the open
source one I have been talking about. He reports that the commercial version,
presumably using Endace DAG interface cards and I expect a very large processor
argus can keep up with an OC192 / 10 GigE link. The DAG interface cards are of
course what you want to be using for doing capture. The interface card has an
onboard CPU, ram and a GPS synced time register. I expect that (because I
would) they only store the slice length of the packet in ram, and when the
packet is complete check the crc and store the good/bad status and enough low
order bits from the time stamp register to recreate an accurate arrival time
for the packet in the onboard ram. Once a suitable number of packets to fill
a reasonable size buffer have been processed by the card, an interrupt to the
host processor then DMAs the block of data to the host processor to be fed to
the application via a pcap like interface.

So far the host processor hasn't been bothered by pesky things like
interrupts for each packet which tend to chew a large amount of CPU cycles /
memory bandwidth to deal with, thats all being done by the onboard processor.
The GPS time stamp allows the correct arrival time of each packet to be
calculated by adding the stored value to a base time stamp. This fixes the
problem that GigE ethernet cards that interrupt once for multiple packets
received (to try and make the same performance saving), which is that the
actual arrival time for each packet is lost, since they will all get the
time stamp at the time of the interrupt.

This is important because netperf at 1.6 gigabits per second on the
athelons was using 1.5 CPUs doing nothing but netperf probably largely because
the older SysKonnects interrupt for every received packet. As noted earlier
argus is happy with only seeing on side of the conversation, so I expect if you
deploy two expensive cards machines you can capture the 10 gig link at full
speed and archive it to a host with lots of fast write performance raid disks
(or perhaps even a memory file system) to create the archive. There is little
question that dealing with 10 gig links is going to be exciting. I expect in
the short term it may be much wiser to deploy 1 gig argus/IDS/IPS boxes on
each gig link that aggregates in to a 10 gig link. This of course leaves the
folks such as Westgrid who intend on putting in a 10 gig host adapter out in
the cold (or possibly I should say in the very center of a very hot fire) and
looking at the limited and expensive options of 10 gig monitors or not
monitoring at all which may be safe enough on a closed network. There is a
snort based IDS appliance that will do some 600 rules at up to 6.5 gigabits
per second apparently available so I understand, although I expect it is pricy.

Hopefully this glimpse in to how we use argus has inspired you to
setting up a trial host on any old hardware (even if it loses packets). Then

when you find it has become indispensable you can come back through and try
out the various performance suggestions in the last part of the paper.

[1] http://www.usenix.org/publications/login/2001-11/pdfs/epp.pdf

[2] http://www/westgrid.ca

Below are a few interesting papers that I have come across on the net:

www.hep.man.ac.uk/u/rich/PFLDnet2003/Fast_wan_v5.pdf

www.hep.man.ac.uk/u/rich/net/nic/GE_FGCS_v18.doc

http://www.malmedal.net/Malmedal_Master_Thesis.pdf

