End-Site Control Plane Service (ESCaPeS) Monitoring with Periscope

Martin Swany
End Site Control Plane System (ESCPS)

- Network service to facilitate site use of circuit services:
 - Accept and process user/app requests for circuit services
 - Provide local interface to & coordination of WAN circuit services
 - Configure local network infrastructure for use of circuits
 - Monitor local network segments of end-to-end path
 - Long term vision: End site component of federated control plane for circuit services
F: Aggregate flow endpoint
V: Virtual path (service) endpoint
T: Termination point (virtual circuit)
A: Admission point (virtual circuit)
C: Continuation point (virtual circuit)

Link
- Uncontrolled segment (dedicated/over-provisioned)
 - ESCPS-controlled segment
 - ESCPS virtual circuit (OSCARS in LAN)
 - 3rd party segment (statically configured)
 - Virtual circuit (WAN)
Periscope

• A Django-based application that gathers, caches, analyzes and displays performance data
 – Also presents data via RESTful and WS interfaces
• A user- (or session-) oriented tool that captures context
• Proactive gathering of data improves response time
 – Caching the user’s world
XSP – eXtensible Session Protocol

- XSPd implements protocol frontend
 - Accepts on-demand reservation requests from clients
 - Signals ESCaPeS to allocate a circuit and monitors circuit status
1. Host statistics collection and reporting with event daemon.
2. XSP client requests path on application request, sends path and application-specific parameters.
3. XSPd signals ESCPS to reserve path based on local config.
4. XSPd monitors path status and reports state to monitoring agent.
5. Agent requests Filter based forwarding or policy based routing counters from router monitor when path is active.
6. Monitoring agent caches measurement data (SNMP).
7. The agent visualizes the network topology and handles client requests for dynamically updated charts and path status.
Host and Application Metrics

• Basic Lightweight perfSONAR Probes (BLiPPs) gather host performance data
 – From /proc, etc

• NetLogger and Calipers instrument read() and write() system calls, calculate duration, summarize over time with varying granularity
ESCaPeS Monitoring
ESCaPeS Monitoring
ESCapeS Monitoring
GridFTP Monitoring
Unified Network Information Service (UNIS)

- Merges TS & LS
- Topology model
 - Tree of nodes at different layers (Network/Node/Port)
 - Relations between arbitrary nodes
 - Node properties
- ‘GIS for networks’
- Relates MPs, MAs to topology
Links and Paths (and Links)
Links and Paths (and Links)

Layer 2 Circuit Endpoint

Layer 2 Device
Layer 2 Device
Layer 2 Device
Layer 2 Device

Layer 2 Circuit Endpoint
Links and Paths (and Links)

TCP endpoint for GridFTP

IP Device

TCP endpoint for GridFTP
Circuit Monitoring

• Another perfSONAR circuit monitoring approach (for DYNES and DYGER) polls OSCARS for reservations and relies on ESxSNMP’s ability to detect new interfaces
• Periscope relies on integration with the control plane
• This allows creation of the router monitoring agent and the host metrics with BLiPP
• Also facilitates active measurements (coming soon)
Thanks

- DAMSL: Ezra Kissel, Guilherme Fernandes, Ahmed El-Hassany, Omer Arap, Matt Jaffee
- ESCaPeS gang: Phil Demar, Andrey Bobyshev, Dantong Yu, Dimitri Katamatos
- LBL: Dan Gunter, Taghrid Samak
- Support:
 - DOE DE-SC0001421: End Site Control Plane Services (FNAL, BNL, UDel)
 - NSF OCI-0943705: Middleware for Monitoring and Troubleshooting of Large-Scale Applications on National Cyberinfrastructure (LBL and UDel)
 - GENI 1788 – Leveraging and abstracting measurements with perfSONAR (UDel)
 - NSF OCI-0721902 – SDCI NMI: Production Services with the perfSONAR framework (UDel)
 - DOE DE-AC02-05CH11231: Center for Enabling Petascale Distributed Science (LBL)