Implementation of NAC at ORNL

Paige Stafford
Summer 2009
ESCC/Internet2 Joint Techs
Indianapolis, IN
July 19-24, 2009
Outline

• Background
 – ORNL’s network
 – NAC defined
 – Origins of ORNL’s NACmgr

• NACmgr implementation
 – Focus on Detection (Polling)

• Future direction and conclusion
ORNLS’s Network

- 4000 employees
- 3000 guests
- 2 class B’s
- Segmented
 - 10 Enclaves
 - 32 routers
 - +900 subnets
 - +600 switches
 - +20,000 registered devices
- Mix of Cisco, 3Com, Foundry
ORNLS Network, Cont.

- +98% clients DHCP enabled
 (mostly Windows)

- Wireless Network
 - WPA
 - DHCP access only
 - Available in all buildings
 - Visitor Network
NAC Implementation Choices

- Looked seriously at Cisco, Lockdown
 - Both Required supplicant
 - user implementation hurdle
 - Cisco
 - Too expensive (have to replace non-Cisco) (total ~$3M)
 - Lockdown
 - Better price
 - Accommodates current switch vendors
 - uncertainty: viability/service support
NAC Implementation Choices, Cont.

• Not ready for COTS quite yet…

• Looked at the nuts and bolts
 – “…we really could do this ourselves…”
 – Started with detection and enforcement

• So, what is NAC?
NAC Defined

Network Access Control (NAC) is a set of technologies and defined processes that aim to control access to the network, allowing only authorized and compliant devices to access and operate on a network.

Here are the elements:

1. Detection
2. Quarantine and Remediation
3. Enforcement
4. Post-Admission Protection
5. Authentication
6. Compliance
7. Authorization

From Ofir Arkin: Bypassing NAC v2.0
ORNL Already Had Most Elements

NACmgr is part of and ties together ORNL’s NAC system
NACmgr

Implementation
NACmgr Implementation – Detection

- Poll all switches/routers
- Every 300 s
- Using SNMP
- Information stored for Detection
 - MAC address (defines the host)
 - IP address(es) used by MAC address
 - Switch and Port
 - Vlan and Router
 - Date/time First and Last polled
NACmgr Implementation – Enforcement

• If DHCP-client
 – “Quarantine”
 • DHCP issues special IP configuration to host
 • requests Issued by ORNL’s compliance monitoring system
 • Changes network registration status
 – Triggers change in DHCP configuration
 • Sends notification to owner, sysmgr

• Else
 – “L2-block”
 • Disable access at the switch
 • MAC drop / Port Disable
NACmgr Implementation – Enforcement, Cont.

- Detects unregistered, non-DHCP clients
 - L2-blocks these
 - DROP mac on Cisco
 - Disable port on 3Com, Foundry

- Masquerading MAC address monitoring
 - Monitors ARP caches
 - for MAC addresses showing up in more than one LAN
NACmgr Implementation – Enforcement, Cont.

• Enforcement must be monitored
 – Since host can move
 • From DHCP enabled to static (and visa versa)
 • To a different port/switch/network
NACmgr – Technical Details

• Large Primary Server
 – Web interface (Apache)
 – NAC database (PostgreSQL)
 – Outpost Server

• Outpost Server (2)
 – Primary duty is polling
 – One or many virtual outposts
NACmgr Code Specifications

• Programming language
 – Researched benchmarks of execution time of hash algorithms of C, C++, Java
 • C++ came out on top
 • http://bruscy.multicon.pl/pages/przemek/java_not_really_faster_than_cpp.html
 • http://members.lycos.co.uk/wjgoh/JavavsC.html
 • http://www.kano.net/javabench/data

• Libraries
 – Net-SNMP: SNMP library for C
 – pqxx: PostgreSQL library for C++
 – Oracle (Network Registration)
 – RudeCGI: C++ CGI library (web interface)
 – pThreads: POSIX threaded library
NACmgr’s Network Model

- Network has three parts
 - L3 (router)
 - Arp Caches
 - One or many Vlans
 - Vlan
 - Ties L3 to L2
 - One to many subnets
 - L2 (switch)
 - Bridge Table
NACmgr Database Model

Corresponds to the Network Model
NACmgr Polling Optimization, Cont.

- Each L3-network is assigned to an Outpost
 - Load Distribution is optimized among outposts
NACmgr Polling Optimization, Cont.

- L3 distribution example

NACmgr web interface

<table>
<thead>
<tr>
<th>Outpost</th>
<th>status</th>
<th>Date/Time Last Polled</th>
<th>Duration (seconds)</th>
<th>L3 Networks Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAC1</td>
<td>ACTIVE</td>
<td>2008-04-01 12:59:34</td>
<td>109</td>
<td>ICS-TEST-CORESW1, PHYSICS_LANS, SWGE1505, SWGE3025, SWGE6010, SWGECSB-2, SWGEJICS</td>
</tr>
<tr>
<td>NAC2</td>
<td>ACTIVE</td>
<td>2008-04-01 12:58:04</td>
<td>69</td>
<td>SWGE4500S, SWGE7603</td>
</tr>
<tr>
<td>NAC3</td>
<td>ACTIVE</td>
<td>2008-04-01 12:59:21</td>
<td>68</td>
<td>NTRCGWY, SWGE1060, SWGE2525, SWGE4500N, SWGCNMS, SWGESNS</td>
</tr>
<tr>
<td>NACmgr</td>
<td>ACTIVE</td>
<td>2008-04-01 12:59:16</td>
<td>61</td>
<td>MECFW1, SWGECSB-1, WIRELESS3750</td>
</tr>
</tbody>
</table>

NACmgr polling time snapshot taken at 13:00

The L3 Network model
NACmgr Polling Optimization, Cont.

• Processing time constraint on data
 – Depends on number of hosts
 – Network Latency is relatively insignificant
 – Outposts complete all polling within 50-90 s
 • Dependent on on time of day
 • e.g. 08:00 load higher than that at 20:00
NACmgr Limitations

• The host is already on the network
 – Before non-compliance is detected

• Switches must be set up correctly
 – Passwords, SNMP access, TTL, etc

• Wireless Network doesn’t poll Access Points
 – Polling and blocking is at the L3 only
Future Direction

• Room for Improvement of existing tasks
• Adding more tasks/functions
 – Adding SHUNs to mix
 – Looking to use vlan assignment at L2 port
• Centralizing ORNL’s NAC systems
• Looking to hire another programmer

[accepting applications now]
Conclusion

- NACmgr is part of the NAC system at ORNL
 - Accommodates current network
 - Managed Out-of-Band, no client supplicant
 - Simple deployment and operation
 - Cost Effective
 - Good solution
 - vs. No Solution
 - Effectively detects and enforces compliance
 - no NAC solution is 100%
Questions?