Shongo – Orchestrating National Collaborative Infrastructure

Petr Holub, Martin Šrom, Ondřej Bouda, Ondřej Pavelka

<Petr.Holub@cesnet.cz>

Global Video Alliance
2011–09–05
Collaborative Infrastructure of CESNET

- H.323/SIP infrastructure
 - MCUs, content servers
 - HW/SW end-points
 - uplink to GDS
- Webconferencing
 - Adobe Connect
 - open-source alternative (e.g., BigBlueButton)
- Recording and streaming infrastructure
- Interfacing to PSTN (and Skype?)
 - audio only, inbound calls from PSTN only
Collaborative Infrastructure of CESNET

● Multiple resource providers:
 ▪ backbone (server) infrastructure: NREN operator (CESNET) + a few large NREN participants
 ▪ endpoints: all NREN participants

● Providers need to retain their share of autonomy
 ▪ they need to prioritize requests of their stakeholders
 ▪ the remaining capacity may be used for peak request mitigation of other providers peak requests...
 ▪ ... but only in a way that doesn’t threaten own (priority) requests
Pilot Use Cases

• Normal allocation of a virtual room
 - if capacity of requestor’s “home infrastructure” is exceeded → buildup of cascading with specific instructions for each client

• Co-allocation of resources
 - H.323/SIP for multipoint audio/video
 - webconferencing for multipoint data sharing
 - recording service
Pilot Use Cases

- Allocation of large event with peak capacity
 - manual approval/denial at respective resource providers if capacity request is beyond automated rule-based authorization
 - minimization of number of resources
 - MCU cascading brings concurrent license wasting
 - buildup of cascading with specific instructions for each client
Pilot Infrastructure Elements

- Minimum set (mandatory for us) includes:
 - MCUs
 - Codian 4510
 - Codian 4515
 - recording servers
 - TANDBERG TCS
 - webconferencing servers
 - Adobe Connect
 - end points
 - Cisco/TANDBERG C Series, MXP Series
 - Polycom HDX Series
 - LifeSize Room
Shongo – Design Principles

- User-empowered approach
 - reservation of resources
 - management of reserved resources during the event
 - management of virtual room on an MCU
 - management of endpoints if desired

- Co-allocation of resources
 - interconnecting reservations (aka one “compartment”): e.g., H.323 – SIP – Adobe Connect – recording service
 - parallel reservations (aka multiple “compartments”): e.g., H.323 – SIP – recording service, Adobe Connect – recording service

- Standardization & interoperability
 - Global Video Alliance
Shongo – Architecture

Diagram showing the architecture of Shongo, with components such as Controller, Domain, EduID, Local configuration, Directory, Calendar, and Resources.
Shongo – Architecture

• Components
 ■ Controller
 ♦ resource database
 ♦ processor of reservation requests
 ♦ scheduler
 ♦ reservation database
 ♦ inter-domain negotiation
 ■ Connector
 ♦ for each device
 ■ User-Interfaces for the Controller

• Components communicate over a set of defined APIs
Shongo – State of Implementation

- Design documents (continuously updated)
 - Use cases and API specs
 - Domain controller design document (data model, architecture description)
- Intra-domain communication infrastructure – JADE
 - based on extensive testing
 - JADE (Java Agent Development Framework)
 - includes fail-over support
 - low overhead of communication
Shongo – State of Implementation

- **Controller**
 - first version implemented
 - implements fairly complete data model
 - simple greedy scheduler with fragmentation minimization strategy

- **Clients/UI**
 - command-line client implemented

- **Connectors**
 - working connector for Cisco/TANDBERG C90
 - working connector for Cisco/TANBERG 45xx Series MCU
 - 90% of work done on a connector for Adobe Connect
Thank you for your attention!

This effort is supported by LM2010005 project.