What is NetFlow?

- Originally a Cisco proprietary technology
- Now supported by other vendors and being standardized in the IETF (ipfix WG)
- Used to be a method to speed up packet forwarding
 - Cache the next interface for given \((\text{src}, \text{dst}, \text{proto}, \text{ports}, \text{tos})\)
 - Look in the cache hash table before you consult the routing table
- It was realized it’s useful for accounting purposes
- Not any longer used for optimization, but the accounting use is growing more widespread
NetFlow version 5

• There are several versions of NetFlow (5, 7, 8 are widespread)

• Provide different fields and different levels of aggregation

• NetFlow v5 gives you records with the following:
 src_ip, dst_ip, packets, octets, start_time, end_time,
 src_port, dst_port, proto, tos, src_as, dst_as, if_in, if_out

• Can use for accounting purposes, but there’s more
Methodology of Data Collection

- Collect 1% sampled NetFlow data from all core Abilene routers
- Collection done at ITEC-Ohio with flow-tools
- Throw away data coming from interfaces between core nodes
- flow-tools now include SNMP hooks for that
- Concatenate the rest of the data
- Ship the resulting files (5–25 GB) to our RAID array daily
- Resulting view treats Abilene as a single data-forwarding unit
Methodology of Data Processing

• The goal is to capture long-term trends
• Weekly averages for everything, hence weekly reports
• Daily averaging too volatile, monthly would take too long
• Two data sets: one the complete thing, one “bulk TCP”
• Bulk TCP is a TCP connection that transferred > 10 MB
• For full data set can do traffic composition
• For bulk TCP data set can do more, including throughput
• Traffic composition studies are routine (though most do not look at file sharing), but looking at bulk TCP is unique
Data Presentation

• Find it at http://netflow.internet2.edu/weekly/
• Weekly: new report added, time-series graphs updated
• The heart: TCP throughput analysis (includes CDF)
• Time-series graphs
• Traffic composition: finally you know what uses Abilene

• Salient points:
 – Median bulk TCP throughput is around 2.5 Mb/s
 – 95th percentile is around 15 Mb/s
 – A decreasing fraction of traffic is file sharing
 – Bulk TCP throughput appears to be increasing
Top 10 Connections

- Top 10 bulk TCP performers
- Only a single connection from a given AS to a given AS can be listed
- Two independent table are produced: one for measurement flows and one for the rest
- If you are going for records, check if your flows show up
 - Validation
 - Independent verification
Costs, Tools Used

- Capacity overhead of data collection is negligible
- Need a machine with disk space ($100 for 40 GB now)
- FOTS (free off the shelf) flow-tools for collection
- Custom-written stuff for analysis (around 2 man-months)
 - CWEB program to make a pass over complete data set
 - Perl programs to post-process and handle presentation
- CWEB part is available as documentation of classification
- Perl part can be released if there's interest
Throughput Distribution of Bulk TCPs

- The shape of the curve mostly similar for different weeks.
- Sometimes one encounters unusual shapes.
 - Denial of service attacks
 - Sets of major demos
- The tail wiggles more than the body
- The virtually straight (on log-log scale) line from 0 to 130 Mb/s or so virtually every week
 - No explanation
 - No “theoretic” shape for this curve
Median, 5th, and 95th Percentile of Bulk TCP Throughput

- Good news: keeps increasing (generally)
- Higher percentiles go up more than median
 - The high-end users had better luck than the masses
 - The wizard gap is widening
- But:
 - Impact of Cisco to Juniper change (different eviction time-outs)
 - Mostly can be explained by changes in OS composition (newer OSes have larger window size)
 - Impact of file-sharing decreases (file-sharing was always below median, so decreases of file-sharing translate to increases of the median)
Median of Bulk TCP Throughput

- Same as on previous plot, but less compressed
- Clearly the trend is up
Percentage of Data Transfer Traffic

- NNTP, HTTP, FTP, and Rsync
- Passive FTP not included (difficult to characterize)
- Goes up in summer and during winter break (because there’s less file sharing and interactive use)
- Fairly stable otherwise
Percentage of File-Sharing Traffic

- The general trend is downwards
- A lot of shifting to new applications
- Some must have spilled over into unidentified
- Correlates well with political and legislative events
Percentage of Measurement Traffic

- Iperf, ICMP, IPMP
- A sizeable chunk of network capacity
- Probably more than desired
Percentage of Encrypted Traffic

- SSH, HTTPS, IPsec
- General trends seems to be up
- Looking at port numbers, so don’t know what fraction of unidentified is encrypted
Percentage of Audio/Video Traffic

- Multicast, Real, Windows Media, etc.
- More volatile than other traffic categories
- Event-related
- Windows Media a minor (but increasing) fraction of Real
Percentage of Advanced Applications Traffic

- UNIDATA LDM, BBFTP, IBP, GsiFTP, McIDAS
- Mostly LDM with a smidgen of BBFTP
- Even more volatile than audio/video
- The fewer users, the more volatility, generally
Percentage of Games Traffic

- Not a big traffic source
- Games are generally design for the masses
- The masses have DSL or cable at best
- Most games are designed so that the bandwidth of dialup is enough
- Advanced application waiting to happen?
Percentage of Miscellaneous Traffic

- Mail, Port 0, AFS, DNS, X11, AIM, Telnet, MS Windows, Squid, NFS, SOCKS, IRC, IDENT, NTP, SNMP, Portmapper, RTIP

- Known traffic that doesn’t fit other categories

- Quite stable
Percentage of Unidentified Traffic

- Quite smoothly changing
- Seems to be negatively correlated with file-sharing in winter
- Seems to be positively correlated with file-sharing in summer
- An unknown fraction might be file-sharing
Percentage of NNTP Traffic

- The most talkative single application on Internet2
- Some percentage swings are related to file-sharing changes
- Most bytes are in binary groups
Percentage of HTTP Traffic

- Less on Internet2 than on commodity Internet
- Not a lot of traffic (in relative terms), huge utility
 - Email has even less traffic and even more utility
- The upward trend is mostly just the decrease in other types of traffic
- Is likely to decrease over time (but likely retain the utility, if similar to email)
Percentage of FTP Traffic

- Active FTP only
- Passive FTP is a part of unidentified
- Peculiarly, percentage decreases during breaks
 - Therefore, mostly used interactively
Percentage of BitTorrent Traffic

- A relatively new file-sharing application
- Open-source
- Originally developed for the distribution of Linux CD images
- Used for other kinds of files nowadays
- Seems to become more and more popular—fast
Percentage of FastTrack Traffic

• The protocol used by KaZaa
• Was virtually gone in the end of summer
• Made a small comeback early fall
• Unlikely to come back big, at least in the original form
Percentage of eDonkey2000 Traffic

- A second-tier file-sharing application
- Remarkably resilient and stable
- Other file-sharing applications come and go, but eDonkey is still here
Percentage of Gnutella Octets

- A file-sharing application
- Used to be a KaZaa competitor
- Steadily losing popularity
- Unlikely to come back
Summary

- Performance is going up
- Wizard gap is widening
- Quantity of file-sharing is going down
- Top 10 tables can help in validation and verification of test results
- http://netflow.internet2.edu/weekly/