3D Digitization at Indiana University and Beyond
3D Digitization – How? (Choosing between techniques)

- **3D Need**
 - Digitize?
 - Surface Only?
 - Photogrammetry?
 - Photogrammetry Workflow (handheld, turntable, drone)
 - Post-processing
 - Metadata / Archiving / Dissemination

- **Digitization Techniques**
 - **3D Scanning** (GoScan, LIDAR, or Matterport)
 - Size, detail, material, etc. (20%)
 - **Volume Scan** (CT, microCT, MRI, etc.)
 - Interior data required (5%)
 - **3D Model (by hand)**
 - Measure, sketch, photos (10%)

- **Uses**
 - Digital Preservation
 - Research & Scholarship
 - Teaching & Learning
 - Public Outreach
Hardware-Based 3D Scanning
Understanding the Limitations

- Hardware Scalability
- Limited Color
Software-based Photogrammetry

• A method for extracting three-dimensional (3D) models or measurements of an object, environment, or terrain from a set of standard two-dimensional (2D) photographs

• Applicable to a broad range of academic disciplines, including cultural heritage, architecture, paleontology, and geospatial

• Results in high computational complexity and large data sizes
Photogrammetry – General Workflow

Life-size bronze statue (by Tuck Langland)

300+ photographs capturing all angles and details

Texture-mapped 3D model

Photogrammetry & 3D post-processing workflows

SfM

Mesh

Texture
Photogrammetry – A word about photography

• Supports many types of cameras & rigs

• Key issues:
 – Quality
 – Coverage
 – Consistency
 – Lighting
 – Background

• Can work with video and integrate depth image data
Photogrammetry for Surface Reconstruction

• Capture series of 2D images
• Use structure from motion techniques to extract 3D surface points

www.wur.nl
3D Digitization Workflow

(by E. Wernert; adapted from IU MDPI Workflow)
Scalable Photogrammetry

Why HPC for Photogrammetry?
- Algorithm complexity → hours-days of computation for small-medium photo sets; weeks for larger data sets on a good workstation

Coordinates:
- \((X, Y, Z)\) - point in the local camera space
- \((u, v)\) - projected point in the image plane
- \(w, h\) - image width and height

Camera:
- \(f\) - focal length
- \(cx, cy\) - principal point offset
- \(K_1, K_2, K_3, K_4\) - radial distortion coefficients
- \(P_1, P_2, P_3, P_4\) - tangential distortion coeffs
- \(B_1, B_2\) - affinity and non-orthogonality coeffs

Solve these systems of equations for every point on every photos in photo set:
- \(x = X / Z\)
- \(y = Y / Z\)
- \(r = \sqrt{x^2 + y^2}\)
- \(x' = x(1 + K_1 r^2 + K_2 r^4 + K_3 r^6 + K_4 r^8) + (P_1 (r^2 + 2x^2) + 2P_2 xy) (1 + P_3 r^2 + P_4 r^4)\)
- \(y' = y(1 + K_1 r^2 + K_2 r^4 + K_3 r^6 + K_4 r^8) + (P_2 (r^2 + 2y^2) + 2P_1 xy) (1 + P_3 r^2 + P_4 r^4)\)
- \(u = w * 0.5 + cx + x'f + x'B1 + y'B2\)
- \(v = h * 0.5 + cy + y'f\)
Scalable Photogrammetry

Large spaces & datasets → large number of photos, many pixels per photo

Architectural Interiors & Exteriors (Matthew Brennan) → ~300-1000+ photos each

Monte Albán Geophysical Archaeology Project (Alex Badillo) → 14,000+ photos → ~30 compute hours
Scalable Photogrammetry

- Getty Center Model
 - 296 images
 - 3.5 GB

- Antefix
 - 415 images
 - 4.3 GB

- Angel Mounds Historic Site
 - 1703 images
 - 37.5 GB
Photogrammetry Processing – Steps

1. Align photos & generate point cloud
2. Build dense point cloud
3. Build mesh
4. Build texture
Comparing Run Times

- Carbonate High Performance Computer at Indiana University
 - 256 GB of RAM per node, scripted to run on 4 nodes
- Google Cloud Virtual Machine
 - 256 GB of RAM and 4 GPUs
- Getty VFX Machines
 - 512GB of RAM and 5 GPUs

All files run at IU transferred using Globus, a high-performance GridFTP service designed for secure data movement between networked endpoints.
VFX, HPC, and Virtual Machine Comparison

Chart Title

- GC model, 296
- Antefix, 415
- Flat Wood, 535
- Frame, 785
- Angel Mounds, 1700

VFX, HPC, VM
Comparison Breakdown

<table>
<thead>
<tr>
<th>Object</th>
<th># Images</th>
<th>Image Set Size (GB)</th>
<th>Processor</th>
<th>Matching</th>
<th>Alignment</th>
<th>Depth Maps</th>
<th>Dense Cloud</th>
<th>Mesh</th>
<th>UV</th>
<th>Blending</th>
<th>Total (mins)</th>
<th>Total (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getty Center Model</td>
<td>296</td>
<td></td>
<td>VFX</td>
<td>143</td>
<td>2</td>
<td>201</td>
<td>381</td>
<td>28</td>
<td>2</td>
<td></td>
<td>60</td>
<td>817</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPC</td>
<td>296</td>
<td>4.5</td>
<td>440</td>
<td>51.5</td>
<td>21.5</td>
<td>2</td>
<td></td>
<td>25</td>
<td>840.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>4</td>
<td>2</td>
<td>70</td>
<td>254</td>
<td>39.5</td>
<td>1.5</td>
<td></td>
<td>20</td>
<td>391</td>
</tr>
<tr>
<td>Antefix</td>
<td>415</td>
<td></td>
<td>VFX</td>
<td>88</td>
<td>27</td>
<td>449</td>
<td>250 n/a</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPC</td>
<td>46.5</td>
<td>2.5</td>
<td>397</td>
<td>30.5</td>
<td>23</td>
<td>1.5</td>
<td></td>
<td>32.5</td>
<td>533.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>12</td>
<td>24.5</td>
<td>152</td>
<td>127</td>
<td>44.5</td>
<td>2.5</td>
<td></td>
<td>55.5</td>
<td>418</td>
</tr>
<tr>
<td>Flat Wood</td>
<td>535</td>
<td></td>
<td>VFX</td>
<td>248</td>
<td>7</td>
<td>675</td>
<td>1444</td>
<td>398</td>
<td>10</td>
<td></td>
<td>61</td>
<td>2843</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPC</td>
<td>1051</td>
<td>12</td>
<td>485</td>
<td>57</td>
<td>40</td>
<td>2</td>
<td></td>
<td>37</td>
<td>1684</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>3</td>
<td>10</td>
<td>80</td>
<td>362</td>
<td>80</td>
<td>2</td>
<td></td>
<td>41.5</td>
<td>578.5</td>
</tr>
<tr>
<td>Frame</td>
<td>785</td>
<td></td>
<td>VFX</td>
<td>248</td>
<td>7</td>
<td>555</td>
<td>1446</td>
<td>21</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2335</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPC</td>
<td>459</td>
<td>7.5</td>
<td>1063.5</td>
<td>206</td>
<td>12</td>
<td>0.5</td>
<td></td>
<td>43.5</td>
<td>1792</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>5.5</td>
<td>7</td>
<td>141</td>
<td>2040</td>
<td>30</td>
<td>0.5</td>
<td></td>
<td>36</td>
<td>2260</td>
</tr>
<tr>
<td>Angel Mounds Drone</td>
<td>1700</td>
<td></td>
<td>HPC</td>
<td>277</td>
<td>36</td>
<td>315</td>
<td>30</td>
<td>106</td>
<td>3.5</td>
<td></td>
<td>42.5</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>7</td>
<td>19</td>
<td>83</td>
<td>117</td>
<td>183</td>
<td>3.5</td>
<td></td>
<td>32</td>
<td>444.5</td>
</tr>
</tbody>
</table>
Comparison Breakdown

<table>
<thead>
<tr>
<th>Object</th>
<th># Images</th>
<th>Image Set Size (GB)</th>
<th>Processor</th>
<th>Matching</th>
<th>Alignment</th>
<th>Depth Maps</th>
<th>Dense Cloud</th>
<th>Time (mins)</th>
<th>UV (hrs)</th>
<th>Blending</th>
<th>Total (mins)</th>
<th>Total (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getty Center Model</td>
<td>296</td>
<td>3.5 VFX 143</td>
<td>HPC</td>
<td>296</td>
<td>70</td>
<td>201</td>
<td>381</td>
<td>28</td>
<td>2</td>
<td>60</td>
<td>817</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>4</td>
<td></td>
<td>440</td>
<td>51.5</td>
<td>21.5</td>
<td>2</td>
<td>25</td>
<td>840.5</td>
<td>14.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>254</td>
<td>39.5</td>
<td>1.5</td>
<td>20</td>
<td>391</td>
<td>6.5</td>
</tr>
<tr>
<td>Antefix</td>
<td>415</td>
<td>4.3 VFX 88</td>
<td>HPC</td>
<td>46.5</td>
<td>397</td>
<td>449</td>
<td>250</td>
<td>23</td>
<td>1.5</td>
<td>32.5</td>
<td>533.5</td>
<td>8.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>12</td>
<td></td>
<td>152</td>
<td>127</td>
<td>44.5</td>
<td>2.5</td>
<td>55.5</td>
<td>418</td>
<td>6.97</td>
</tr>
<tr>
<td>Flat Wood</td>
<td>535</td>
<td>4.7 VFX 248</td>
<td>HPC</td>
<td>1051</td>
<td>675</td>
<td>675</td>
<td>1444</td>
<td>398</td>
<td>10</td>
<td>61</td>
<td>2843</td>
<td>43.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>3</td>
<td></td>
<td>485</td>
<td>57</td>
<td>40</td>
<td>2</td>
<td>37</td>
<td>1684</td>
<td>28.1</td>
</tr>
<tr>
<td>Frame</td>
<td>785</td>
<td>5.3 VFX 248</td>
<td>HPC</td>
<td>459</td>
<td>80</td>
<td>555</td>
<td>1446</td>
<td>21</td>
<td>3</td>
<td>55</td>
<td>2335</td>
<td>38.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GCP</td>
<td>5.5</td>
<td></td>
<td>1063.5</td>
<td>206</td>
<td>12</td>
<td>0.5</td>
<td>43.5</td>
<td>1792</td>
<td>29.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td>2040</td>
<td>30</td>
<td>0.5</td>
<td>36</td>
<td>2260</td>
<td>37.67</td>
</tr>
<tr>
<td>Angel Mounds Drone</td>
<td>1700</td>
<td>37.5 HPC 277</td>
<td>GCP</td>
<td>7</td>
<td>315</td>
<td>315</td>
<td>30</td>
<td>106</td>
<td>3.5</td>
<td>42.5</td>
<td>810</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>117</td>
<td>183</td>
<td>3.5</td>
<td>32</td>
<td>444.5</td>
<td>7.41</td>
</tr>
</tbody>
</table>
3D Digitization Workflow

(by E. Wernert; adapted from IU MDPI Workflow)
Covid-19, Now What? Virtual Tours

Bicentennial Traveling Exhibit

Center for Ray Bradbury Studies

Herron Basile Gallery

Herron Marsh Gallery
Thank you!

For questions or more information:

cyberdh@iu.edu